ZARISKI MULTIPLES ASSOCIATED WITH QUARTIC CURVES

ICHIRO SHIMADA

Abstract

We investigate reducible plane curves whose irreducible components are a general smooth quartic curve, some of its bitangents, and some of its 4 -tangent conics. We show that the deformation types of plane curves of this type coincide with the homeomorphism types. The number of deformation types grows as the 62 nd power of the degree of the plane curves when the degree tends to infinity. Thus we obtain Zariski multiples of large sizes.

1. Introduction

By a plane curve, we mean a reduced, possibly reducible, complex projective plane curve. We say that two plane curves C and C^{\prime} have the same combinatorial type if there exist tubular neighbourhoods $T(C)$ of C and $T\left(C^{\prime}\right)$ of C^{\prime} such that $(T(C), C)$ and $\left(T\left(C^{\prime}\right), C^{\prime}\right)$ are homeomorphic, whereas we say that C and C^{\prime} have the same homeomorphism type if $\left(\mathbb{P}^{2}, C\right)$ and $\left(\mathbb{P}^{2}, C^{\prime}\right)$ are homeomorphic.

A Zariski N-ple is a set of plane curves $\left\{C_{1}, \ldots, C_{N}\right\}$ such that the curves C_{i} have the same combinatorial type, but their homeomorphism types are pairwise different. The notion of Zariski N-ples was introduced by Artal-Bartolo [1] in reviving a classical example of 6 -cuspidal curves of degree 6 due to Zariski. Since then, this notion has been studied by many people from various points of view. Some of the tools that have been used in this investigation are: Alexander polynomials, characteristic varieties, fundamental groups of complements, topological invariants of branched coverings, and so on. See the survey paper [3]. Recently, Bannai et al. [4, 5, 6] have investigated Zariski N-ples such that each member is a union of a smooth quartic curve and some of its bitangents.

In this paper, we introduce 4-tangent conics of a smooth quartic curve, and consider Zariski N-ples Z_{1}, \ldots, Z_{N} such that each Z_{i} is a union of a smooth quartic curve, some of its bitangents, and some of its 4 -tangent conics.

Let Q be a smooth quartic curve. A bitangent of Q is a line whose intersection multiplicity with Q is even at each intersection point. It is well known that every smooth quartic curve has exactly 28 bitangents. We say that a bitangent \bar{l} of Q is ordinary if \bar{l} is tangent to Q at distinct 2 points. A smooth conic $\bar{c} \subset \mathbb{P}^{2}$ is called a 4-tangent conic of Q if \bar{c} is tangent to Q at 4 distinct points. Every smooth quartic curve has 63 one-dimensional connected families of 4 -tangent conics (see Theorem 4.1).
Definition 1.1. Let m and n be non-negative integers such that $m \leq 28$. We say that a plane curve Z is a $\mathcal{Q}^{(m, n)}$-curve if Z is of the form

$$
\begin{equation*}
Z=Q+\bar{l}_{1}+\cdots+\bar{l}_{m}+\bar{c}_{1}+\cdots+\bar{c}_{n} \tag{1.1}
\end{equation*}
$$

where Q is a smooth quartic curve, $\bar{l}_{1}, \ldots, \bar{l}_{m}$ are distinct bitangents of Q, and $\bar{c}_{1}, \ldots, \bar{c}_{n}$ are distinct 4 -tangent conics of Q, and they satisfy that
(i) the bitangents $\bar{l}_{1}, \ldots, \bar{l}_{m}$ are ordinary,
(ii) the intersection of any three of $Q, \bar{l}_{1}, \ldots, \bar{l}_{m}, \bar{c}_{1}, \ldots, \bar{c}_{n}$ is empty, and
(iii) the intersection of any two of $\bar{l}_{1}, \ldots, \bar{l}_{m}, \bar{c}_{1}, \ldots, \bar{c}_{n}$ is transverse.

[^0]| m | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 1 | 1 | 2 | 3 | 5 | 10 | 16 | 23 | 37 | 54 | 70 | 90 | 101 | 103 |
| G | 1 | 1 | 2 | 3 | 5 | 9 | 16 | 23 | 37 | 54 | 70 | 90 | 101 | 103 |

TABLE 1.1. $N^{(m, 0)}=N^{(28-m, 0)}$

n	1	2	3	4	5	6	7	8	9	10
N	1	3	9	30	112	501	2483	13791	81404	490750
G	1	3	7	22	71	306	1585	9831	64790	425252

TABLE 1.2. $N^{(0, n)}$

(m, n)	$(1,1)$	$(1,2)$	$(2,1)$	$(1,3)$	$(2,2)$	$(3,1)$	$(1,4)$	$(2,3)$	$(3,2)$	$(4,1)$
N	2	8	4	33	23	9	162	132	66	20
G	2	8	3	30	17	8	140	95	57	17

(m, n)	$(1,5)$	$(2,4)$	$(3,3)$	$(4,2)$	$(5,1)$	$(1,6)$	$(2,5)$	$(3,4)$	$(4,3)$	$(5,2)$	$(6,1)$
N	901	889	508	190	45	5674	6503	4348	1854	531	103
G	753	670	430	164	42	4829	5259	3812	1649	501	96

TABLE 1.3. $N^{(m, n)}$

It is obvious that any two $\mathcal{Q}^{(m, n)}$-curves have the same combinatorial type. We construct a non-singular variety $\mathcal{Z}^{(m, n)}$ parameterizing all $\mathcal{Q}^{(m, n)}$-curves in Section 5.
Definition 1.2. We say that two $\mathcal{Q}^{(m, n)}$-curves have the same deformation type if they belong to the same connected component of the parameter space $\mathcal{Z}^{(m, n)}$.

It is obvious that $\mathcal{Q}^{(m, n)}$-curves of the same deformation type have the same homeomorphism type. Our main results are the following:
Theorem 1.3. If two $\mathcal{Q}^{(m, n)}$-curves have the same homeomorphism type, then they have the same deformation type.

We put

$$
\begin{equation*}
d^{(m, n)}:=\binom{28}{m} \cdot\binom{n+62}{62} \tag{1.2}
\end{equation*}
$$

which grows as $O\left(n^{62}\right)$ when $n \rightarrow \infty$.
Theorem 1.4. The number $N^{(m, n)}$ of deformation types of $\mathcal{Q}^{(m, n)}$-curves satisfies

$$
\begin{equation*}
d^{(m, n)} / 1451520 \leq N^{(m, n)} \leq d^{(m, n)} \tag{1.3}
\end{equation*}
$$

The main ingredient of the proof of these results is the monodromy argument of Harris [9] (see Theorem 3.1). This argument converts the problem of enumerating deformation types of $\mathcal{Q}^{(m, n)}$-curves to an easy combinatorial problem of counting orbits of an action of the Weyl group $W\left(E_{7}\right)$ on a certain finite set. In Tables 1.1, 1.2, 1.3, we give a list of $N^{(m, n)}$ for some (m, n). See Section 5.2 for more detail.

To each $\mathcal{Q}^{(m, n)}$-curve Z, we associate a discrete invariant $g(Z)$, which we call an intersection graph. This invariant is similar to the splitting graph defined in [19]. Note that each of the bitangents $\bar{l}_{1}, \ldots, \bar{l}_{m}$ and a 4 -tangent conics $\bar{c}_{1}, \ldots, \bar{c}_{n}$ of the smooth quartic curve $Q \subset Z$ splits by the double covering $Y \rightarrow \mathbb{P}^{2}$ branched along Q. This data $g(Z)$ describes how the irreducible components of these pull-backs intersect on Y. See Section 8 for the precise definition. In Tables,
we also present the number G of non-isomorphic intersection graphs obtained from $\mathcal{Q}^{(m, n)}$-curves. When $n=0$, the intersection graph $g(Z)$ is the two-graph studied in [5], in which Bannai and Ohno studied $\mathcal{Q}^{(m, 0)}$-curves for $m \leq 6$, and enumerated their homeomorphism types that can be distinguished by the two-graphs. See Sections 9.1 and 9.2 for the details.

The 4 -tangent conics of a smooth quartic curve Q are related to the 2 -torsion points of the Jacobian of Q (see Remark 4.3). A similar idea applied to plane cubic curves enabled us to construct in [15] certain equisingular families of plane curves with many connected components. In [15], it was also shown that these connected components cannot be distinguished by the fundamental groups of the complements, because they are all abelian. Then it was shown in [8] and [18] that the homeomorphism types of distinct connected components of these families can be distinguished by the invariant called linking numbers.

The embedding topology of reducible plane curves whose irreducible components are tangent to each other was also investigated by Artal Bartolo, Cogolludo, and Tokunaga in [2] from the view point of dihedral covering of the plane branched along the curve. In this case, the complement can have a non-abelian fundamental group. See [2, Corollary 1].

It would be an interesting problem to study the fundamental groups of the complements of $\mathcal{Q}^{(m, n)}$-curves, and their related invariants such as linking numbers and/or (non-)existence of finite coverings of the plane with prescribed Galois groups.

Via the cyclic covering of the plane of degree 4 branched along a smooth quartic curve, the geometry of $\mathcal{Q}^{(m, n)}$-curves is related to the geometry of $K 3$ surfaces. By considering the double covering branched along a singular sextic curve and employing Torelli theorem for complex K3 surfaces, we have investigated in [16] Zariski N-ples of plane curves of degree 6 with only simple singularities. We expect that a similar idea can be applied to Zariski N-ples associated with singular quartic curves.

This paper is organized as follows. In Section 2, we introduce cyclic coverings $X_{u} \rightarrow Y_{u} \rightarrow \mathbb{P}^{2}$ branched over a smooth quartic curve Q_{u}, and fix some notation. In Section 3, we recall the result of Harris [9]. In Section 4, we construct the family of 4 -tangent conics. In Section 5, we construct the space $\mathcal{Z}^{(m, n)}$ parameterizing all $\mathcal{Q}^{(m, n)}$-curves, and prove Theorems 1.3 and 1.4. In Section 6, we further study the family of 4 -tangent conics in detail. The geometry of the $K 3$ surface X_{u} is closely investigated. In Section 7, we study the configurations of lifts in Y_{u} of bitangents and 4 -tangent conics, and we define the intersection graph $g(Z)$ in Section 8. In Section 9, we examine some examples for small m and n.

Acknowledgement. Thanks are due to Professor Shinzo Bannai and Professor Taketo Shirane for discussions and comments. The author also thanks the anonymous referee for his/her valuable comments on the first version of this paper.

2. Coverings of \mathbb{P}^{2}

For a positive integer d, we put

$$
\Gamma(d):=H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(d)\right)
$$

Let \mathcal{U} denote the space of smooth quartic curves, which is a Zariski open subset of $\mathbb{P}_{*}(\Gamma(4))$. Let u be a point of \mathcal{U}. We denote by $Q_{u} \subset \mathbb{P}^{2}$ the smooth quartic curve corresponding to the point u. We consider the following branched coverings:

$$
\gamma_{u}: X_{u} \xrightarrow{\eta_{u}} Y_{u} \xrightarrow{\pi_{u}} \mathbb{P}^{2}
$$

where π_{u} is the double covering of \mathbb{P}^{2} branched along Q_{u}, η_{u} is the double covering of Y_{u} branched along $\pi_{u}^{-1}\left(Q_{u}\right)$, and $\gamma_{u}=\pi_{u} \circ \eta_{u}$ is the cyclic covering of degree 4 of \mathbb{P}^{2} branched along Q_{u}. We put

$$
S Y_{u}:=H^{2}\left(Y_{u}, \mathbb{Z}\right)
$$

\mathbb{P}^{2}	Y_{u}	X_{u}
\bar{l}	$\pi_{u}^{*}(\bar{l})=l+l^{\prime}$	$\gamma_{u}^{*}(\bar{l})=\tilde{l}+\tilde{l}^{\prime}$
	$\langle l, l\rangle_{Y}=\left\langle l^{\prime}, l^{\prime}\right\rangle_{Y}=-1$	$\langle\tilde{l}, \tilde{l}\rangle_{X}=\left\langle\tilde{l}^{\prime}, \tilde{l}^{\prime}\right\rangle_{X}=-2$
	$\left\langle l, l^{\prime}\right\rangle_{Y}=2$	$\left\langle\tilde{l}, \tilde{l}^{\prime}\right\rangle_{X}=4$
	$\left\langle h_{u}, l\right\rangle_{Y}=\left\langle h_{u}, l^{\prime}\right\rangle_{Y}=1$	$\left\langle\tilde{h}_{u}, \tilde{l}\right\rangle_{X}=\left\langle\tilde{h}_{u}, \tilde{l}^{\prime}\right\rangle_{X}=2$
\bar{c}	$\pi_{u}^{*}(\bar{c})_{=c+c^{\prime}}$	$\gamma_{u}^{*}(\bar{c})=\tilde{c}+\tilde{c}^{\prime}$
	$\langle c, c\rangle_{Y}=\left\langle c^{\prime}, c^{\prime}\right\rangle_{Y}=0$	$\langle\tilde{c}, \tilde{c}\rangle_{X}=\left\langle\tilde{c}^{\prime}, \tilde{c}^{\prime}\right\rangle_{X}=0$
	$\left\langle c, c^{\prime}\right\rangle_{Y}=4$	$\left\langle\tilde{c}, \tilde{c}^{\prime}\right\rangle_{X}=8$
	$\left\langle h_{u}, c\right\rangle_{Y}=\left\langle h_{u}, c^{\prime}\right\rangle_{Y}=2$	$\left\langle\tilde{h}_{u}, \tilde{c}\right\rangle_{X}=\left\langle\tilde{h}_{u}, \tilde{c}^{\prime}\right\rangle_{X}=4$

Table 2.1. Pull-backs of bitangents and 4-tangent conics
which is a unimodular lattice of rank 8 with the cup-product \langle,\rangle_{Y}. Let $h_{u} \in S Y_{u}$ be the class of the pull-back of a line on \mathbb{P}^{2} by π_{u}. It is well known that Y_{u} is a del Pezzo surface of degree 2 with the anti-canonical class h_{u}. (See [7, Chapters 6 and 8$]$ about del Pezzo surfaces.) On the other hand, the surface X_{u} is a $K 3$ surface. Let \langle,\rangle_{X} denote the cup product of $H^{2}\left(X_{u}, \mathbb{Z}\right)$, and let \tilde{h}_{u} be the class $\eta_{u}^{*}\left(h_{u}\right)$. Then \tilde{h}_{u} is an ample class of degree $\left\langle\tilde{h}_{u}, \tilde{h}_{u}\right\rangle_{X}=4$.

It is classically known that every smooth quartic curve Q_{u} has exactly 28 bitangents. Moreover, if u is general in \mathcal{U}, all bitangents \bar{l} of Q_{u} are ordinary, that is, \bar{l} is tangent to Q_{u} at two distinct points.

Definition 2.1. A reduced conic $\bar{c} \subset \mathbb{P}^{2}$ is called a splitting conic of Q_{u} if the intersection multiplicity of Q_{u} and \bar{c} is even at each intersection point.

A smooth conic \bar{c} is splitting if and only if $\pi_{u}^{*}(\bar{c}) \subset Y_{u}$ has two irreducible components. A singular reduced conic \bar{c} is splitting if and only if \bar{c} is a union of two distinct bitangents.

It is easy to see that a smooth conic $\bar{c}=\{g=0\}$ defined by $g \in \Gamma(2)$ is a splitting conic of $Q_{u}=\{\varphi=0\}$ defined by $\varphi \in \Gamma(4)$ if and only if there exist polynomials $f \in \Gamma(2)$ and $q \in \Gamma(2)$ such that $\varphi=f g+q^{2}$. By an easy dimension counting, we see the following:

Lemma 2.2. Suppose that u is general in \mathcal{U}. Let $\bar{c} \subset \mathbb{P}^{2}$ be a smooth splitting conic of Q_{u}. Then the intersection multiplicities of Q_{u} and \bar{c} are either $(2,2,2,2)$ or $(4,2,2)$.

Definition 2.3. A smooth splitting conic $\bar{c} \subset \mathbb{P}^{2}$ of Q_{u} is called a 4-tangent conic (resp. a 3 -tangent conic) of Q_{u} if the intersection multiplicities of Q_{u} and \bar{c} are (2,2,2,2) (resp. (4, 2, 2)).

The following is easy to verify. The results are summarized in Table 2.1.
Proposition 2.4. (1) Let \bar{l} be an ordinary bitangent of Q_{u}. Then $\pi_{u}^{*}(\bar{l})$ is a union of two smooth rational curves l and l^{\prime} on Y_{u} with self-intersection -1 that intersect at two points transversely, and $\gamma_{u}^{*}(\bar{l})$ is a union of two smooth rational curves \tilde{l} and \tilde{l}^{\prime} on X_{u} with self-intersection -2 that intersect at two points with intersection multiplicities (2,2).
(2) Let \bar{c} be a 4-tangent conic of Q_{u}. Then $\pi_{u}^{*}(\bar{c})$ is a union of two smooth rational curves c and c^{\prime} on Y_{u} with self-intersection 0 that intersect at four points transversely, and $\gamma_{u}^{*}(\bar{c})$ is a union of two smooth elliptic curves \tilde{c} and \tilde{c}^{\prime} on X_{u} with self-intersection 0 that intersect at four points with intersection multiplicities (2,2,2,2).
Definition 2.5. A curve l on Y_{u} is called a Y-lift of a bitangent \bar{l} of Q_{u} if π_{u} maps l to \bar{l} isomorphically. We also say that a curve c on Y_{u} is a Y-lift of a splitting conic \bar{c} of Q_{u} if π_{u} maps c to \bar{c} isomorphically.

3. Monodromy

Let u be a point of \mathcal{U}. It is well known that the lattice $S Y_{u}=H^{2}\left(Y_{u}, \mathbb{Z}\right)$ is isomorphic to the lattice of rank 8 whose Gram matrix is the diagonal matrix $\operatorname{diag}(1,-1, \ldots,-1)$, and that the orthogonal complement

$$
\Sigma_{u}:=\left(\mathbb{Z} h_{u} \hookrightarrow S Y_{u}\right)^{\perp}
$$

of the ample class h_{u} in $S Y_{u}$ is isomorphic to the negative-definite root lattice of type E_{7}. The deck transformation

$$
\iota_{u}: Y_{u} \rightarrow Y_{u}
$$

of $\pi_{u}: Y_{u} \rightarrow \mathbb{P}^{2}$ acts on Σ_{u} as -1 . Note that the group $\mathrm{O}\left(\Sigma_{u}\right)$ of isometries of Σ_{u} is equal to the Weyl group $W\left(E_{7}\right)$, which is of order 2903040. Hence there exists an injective homomorphism

$$
\begin{equation*}
\mathrm{O}\left(S Y_{u}, h_{u}\right):=\left\{g \in \mathrm{O}\left(S Y_{u}\right) \mid h_{u}^{g}=h_{u}\right\} \quad \hookrightarrow W\left(E_{7}\right) \tag{3.1}
\end{equation*}
$$

It is easy to check that the action on Σ_{u} of each of the standard generators of $W\left(E_{7}\right)$ lifts to an isometry of $S Y_{u}$ that fixes h_{u}. Hence the homomorphism (3.1) is in fact an isomorphism. The family of lattices $\left\{S Y_{u} \mid u \in \mathcal{U}\right\}$ forms a locally constant system

$$
\mathcal{S Y} \rightarrow \mathcal{U}
$$

Let b be a general point of \mathcal{U}, which will serve as a base point of \mathcal{U}. The monodromy action of $\pi_{1}(\mathcal{U}, b)$ on the lattice $S Y_{b}$ preserves $h_{b} \in S Y_{b}$.

Theorem 3.1 (Harris [9]). The monodromy homomorphism

$$
\begin{equation*}
\pi_{1}(\mathcal{U}, b) \rightarrow \mathrm{O}\left(S Y_{b}, h_{b}\right) \cong W\left(E_{7}\right) \tag{3.2}
\end{equation*}
$$

is surjective.
The original statement in [9] is not on the monodromy action on the lattice $S Y_{b}$, but on the Galois group $W\left(E_{7}\right) /\{ \pm 1\} \cong \mathrm{GO}_{6}\left(\mathbb{F}_{2}\right)$ of bitangents of Q_{b}. Moreover the proof in [9] is via the proof of a similar result on cubic surfaces with E_{7} replaced by E_{6}. Hence we give a direct and simple proof of Theorem 3.1 below.

For the proof, we prepare some more notation, which will be used throughout this paper. We denote by \bar{L}_{u} the set of bitangents of Q_{u}, and L_{u} the set of Y-lifts of bitangents of Q_{u}. Let Σ_{u}^{\vee} denote the dual lattice of Σ_{u}. By identifying $l \in L_{u}$ with its class $[l] \in S Y_{u}$, we have an identification

$$
\begin{align*}
L_{u} & =\left\{v \in S Y_{u} \mid\left\langle v, h_{u}\right\rangle_{Y}=1,\langle v, v\rangle_{Y}=-1\right\} \tag{3.3}\\
& \cong\left\{v \in \Sigma_{u}^{\vee} \mid\langle v, v\rangle_{Y}=-3 / 2\right\}
\end{align*}
$$

where the second bijection is obtained by the orthogonal projection $S Y_{u} \rightarrow \Sigma_{u}^{\vee}$. We put $\overline{S Y}_{u}:=S Y_{u} /\left\langle\iota_{u}\right\rangle$, and consider the commutative diagram

$$
\begin{array}{ccc}
L_{u} & \hookrightarrow & S Y_{u} \\
\downarrow & & \downarrow \tag{3.4}\\
\bar{L}_{u} & \hookrightarrow & \overline{S Y}_{u}
\end{array}
$$

where vertical arrows are quotient maps by the involution ι_{u}. Since the action of $\pi_{1}(\mathcal{U}, b)$ on $S Y_{b}$ commutes with ι_{b}, we have a monodromy action of $\pi_{1}(\mathcal{U}, b)$ on $\overline{S Y}_{b}$. Thus we obtain a diagram

$$
\begin{array}{ccc}
\mathcal{L} & \hookrightarrow & \mathcal{S Y} \\
\downarrow & & \downarrow \tag{3.5}\\
\overline{\mathcal{L}} & \hookrightarrow & \frac{\mathcal{S Y}}{}
\end{array}
$$

of locally constant systems over \mathcal{U} parameterizing the diagram (3.4) over \mathcal{U}, where vertical arrows are quotient maps by the family of involutions

$$
\iota_{\mathcal{U}}:=\left\{\iota_{u} \mid u \in \mathcal{U}\right\} .
$$

Note that $\overline{\mathcal{L}}$ is the space parameterizing all bitangents of smooth quartic curves.
Proof of Theorem 3.1. Let $L_{u}^{\{7\}}$ (resp. $L_{u}^{[7]}$) be the set of non-ordered 7-tuples $\left\{l_{1}, \ldots, l_{7}\right\}$ (resp. ordered 7 -tuples $\left[l_{1}, \ldots, l_{7}\right]$) of elements $l_{1}, \ldots, l_{7} \in L_{u}$ such that $\left\langle l_{i}, l_{j}\right\rangle_{Y}=0$ for $i \neq j$. By (3.3), we can enumerate all elements of $L_{u}^{\{7\}}$. It turns out that $\left|L_{u}^{\{7\}}\right|=576$, and hence

$$
\begin{equation*}
\left|L_{u}^{[7]}\right|=576 \cdot 7!=2903040=\left|W\left(E_{7}\right)\right| \tag{3.6}
\end{equation*}
$$

(See also Remark 6.6.) For 7-tuples $\lambda=\left[l_{1}, \ldots, l_{7}\right]$ and $\lambda^{\prime}=\left[l_{1}^{\prime}, \ldots, l_{7}^{\prime}\right]$ in $L_{u}^{[7]}$, there exists a unique isometry $g_{\lambda, \lambda^{\prime}} \in \mathrm{O}\left(S Y_{u} \otimes \mathbb{Q}\right)$ such that

$$
g_{\lambda, \lambda^{\prime}}\left(h_{u}\right)=h_{u}, \quad g_{\lambda, \lambda^{\prime}}\left(l_{i}\right)=l_{i}^{\prime} \quad(i=1, \ldots, 7)
$$

It is enough show that, when $u=b$, these elements $g_{\lambda, \lambda^{\prime}}$ are contained in the image of the monodromy (3.2). Indeed, by (3.6), this claim implies that these isometries $g_{\lambda, \lambda^{\prime}}$ constitute the whole group $\mathrm{O}\left(S Y_{b}, h_{b}\right) \cong W\left(E_{7}\right)$. To prove this claim, it is enough to show that $\pi_{1}(\mathcal{U}, b)$ acts on $L_{b}^{[7]}$ transitively by the monodromy, or equivalently, to show that the total space $\mathcal{L}^{[7]}$ of the locally constant system

$$
\mathcal{L}^{[7]} \rightarrow \mathcal{U}
$$

obtained from the family $\left\{L_{u}^{[7]} \mid u \in \mathcal{U}\right\}$ is connected.
Let $\lambda=\left[l_{1}, \ldots, l_{7}\right]$ be a point of $\mathcal{L}^{[7]}$ over $u \in \mathcal{U}$. Contracting the (-1)-curves l_{1}, \ldots, l_{7}, we obtain a birational morphism

$$
\mathrm{bl}_{\lambda}: Y_{u} \rightarrow \mathbf{P}_{\lambda}
$$

to a projective plane \mathbf{P}_{λ}. We put $\beta_{\lambda}:=\left[\mathrm{bl}_{\lambda}\left(l_{1}\right), \ldots, \mathrm{bl}_{\lambda}\left(l_{7}\right)\right]$. Conversely, we fix a projective plane \mathbf{P}, and let $\mathbf{P}^{[7]}$ denote the set of ordered 7 -tuples $\left[p_{1}, \ldots, p_{7}\right]$ of distinct points of \mathbf{P}. For a general point $\beta=\left[p_{1}, \ldots, p_{7}\right]$ of $\mathbf{P}^{[7]}$, let

$$
\mathrm{bl}^{\beta}: Y^{\beta} \rightarrow \mathbf{P}
$$

be the blowing-up at the points p_{1}, \ldots, p_{7}. Then Y^{β} is a del Pezzo surface of degree 2, and the complete linear system of the anti-canonical divisor on Y^{β} gives a double covering $Y^{\beta} \rightarrow \mathbb{P}^{2}$ branched along a smooth quartic curve Q^{β} such that each of the 7 exceptional curves over p_{1}, \ldots, p_{7} is a Y-lift of a bitangent of Q^{β}. Hence there exist a point $\lambda \in \mathcal{L}^{[7]}$ and an isomorphism $\mathbf{P}_{\lambda} \cong \mathbf{P}$ that maps β_{λ} to β.

We put

$$
\mathcal{I}:=\left\{(\lambda, \gamma, \beta) \left\lvert\, \begin{array}{l}
\lambda \in \mathcal{L}^{[7]}, \beta \in \mathbf{P}^{[7]}, \text { and } \gamma \text { is an isomorphism } \\
\mathbf{P}_{\lambda} \cong \mathbf{P} \text { that maps } \beta_{\lambda} \text { to } \beta
\end{array}\right.\right\} .
$$

Then the projection $\mathcal{I} \rightarrow \mathcal{L}^{[7]}$ is surjective with fibers isomorphic to $\mathrm{PGL}_{3}(\mathbb{C})$, whereas the projection $\mathcal{I} \rightarrow \mathbf{P}^{[7]}$ is dominant with fibers isomorphic to $\mathrm{PGL}_{3}(\mathbb{C})$. Since $\mathbf{P}^{[7]}$ and $\mathrm{PGL}_{3}(\mathbb{C})$ are connected, we see that $\mathcal{L}^{[7]}$ is connected.

4. Family of 4-TANGENT CONiCS

In this section, we construct a space $\overline{\mathcal{C}}$ parameterizing all 4 -tangent conics of smooth quartic curves.

Let \bar{C}_{u} denote the set of 4-tangent conics of Q_{u}, and let C_{u} be the set of Y-lifts of 4-tangent conics of Q_{u}. We put

$$
\begin{equation*}
F_{u}:=\left\{v \in S Y_{u} \mid\left\langle v, h_{u}\right\rangle_{Y}=2,\langle v, v\rangle_{Y}=0\right\} \cong\left\{v \in \Sigma_{u} \mid\langle v, v\rangle_{Y}=-2\right\} \tag{4.1}
\end{equation*}
$$

where the second bijection is given by the orthogonal projection $S Y_{u} \rightarrow \Sigma_{u}^{\vee}$. As was shown in Table 2.1, we have $[c] \in F_{u}$ for any $c \in C_{u}$. Note that $\left|F_{u}\right|=126$, the number of roots of the root lattice Σ_{u} of type E_{7}. We put

$$
\bar{F}_{u}:=F_{u} /\left\langle\iota_{u}\right\rangle \subset \overline{S Y}_{u}
$$

Then we have a commutative diagram

where $\Phi_{u}: C_{u} \rightarrow F_{u}$ is given by $c \mapsto[c] \in S Y_{u}$, and the vertical arrows are quotient by the involution $\iota_{u}: Y_{u} \rightarrow Y_{u}$. We have locally constant systems $\mathcal{F} \rightarrow \mathcal{U}$ and $\overline{\mathcal{F}} \rightarrow \mathcal{U}$ obtained from the families $\left\{F_{u} \mid u \in \mathcal{U}\right\}$ and $\left\{\bar{F}_{u} \mid u \in \mathcal{U}\right\}$.

Theorem 4.1. There exists a commutative diagram

$$
\begin{array}{ccccc}
\mathcal{C} & \xrightarrow{\Phi u} & \mathcal{F} & \hookrightarrow & \mathcal{S Y} \tag{4.3}\\
\downarrow & & \downarrow & & \downarrow \\
\overline{\mathcal{C}} & \xrightarrow{\Phi} \mathfrak{u} & \overline{\mathcal{F}} & \hookrightarrow & \stackrel{\mathcal{S Y}}{ }
\end{array}
$$

of morphisms over \mathcal{U} that parameterizes the diagrams (4.2) over \mathcal{U}. The morphisms $\Phi_{\mathcal{U}}: \mathcal{C} \rightarrow \mathcal{F}$ and $\bar{\Phi}_{\mathcal{U}}: \overline{\mathcal{C}} \rightarrow \overline{\mathcal{F}}$ are smooth and surjective, and every fiber of them is a Zariski open subset of \mathbb{P}^{1}.

For the proof, we use the double covering $\eta_{u}: X_{u} \rightarrow Y_{u}$ of Y_{u} by the $K 3$ surface X_{u}. We consider the Néron-Severi lattice

$$
S X_{u}:=H^{2}\left(X_{u}, \mathbb{Z}\right) \cap H^{1,1}\left(X_{u}\right)
$$

with the intersection form \langle,\rangle_{X}. Then η_{u} induces a embedding of the lattice

$$
\eta_{u}^{*}: S Y_{u}(2) \hookrightarrow S X_{u}
$$

where $S Y_{u}(2)$ is the lattice obtained from $S Y_{u}$ by multiplying the intersection form by 2 . Let $j_{u}: X_{u} \rightarrow X_{u}$ be a generator of the cyclic group $\operatorname{Gal}\left(X_{u} / \mathbb{P}^{2}\right)$ of order 4. Then $\eta_{u}: X_{u} \rightarrow Y_{u}$ is the quotient morphism by j_{u}^{2}. Hence j_{u}^{2} acts on the image of $\eta_{u}^{*}: S Y_{u}(2) \hookrightarrow S X_{u}$ trivially.

Proof of Theorem 4.1. Note that the family of involutions $\iota_{\mathcal{U}}=\left\{\iota_{u} \mid u \in \mathcal{U}\right\}$ acts on \mathcal{F} over \mathcal{U} without fixed points. Hence, if the parameterizing space $\Phi_{\mathcal{U}}: \mathcal{C} \rightarrow \mathcal{F}$ of $\Phi_{u}: C_{u} \rightarrow F_{u}$ is constructed, then $\bar{\Phi}_{\mathcal{U}}: \overline{\mathcal{C}} \rightarrow \overline{\mathcal{F}}$ is constructed as a quotient of $\Phi_{\mathcal{U}}: \mathcal{C} \rightarrow \mathcal{F}$ by $\iota_{\mathcal{U}}$.

Let u be an arbitrary point of \mathcal{U}, and let v be an element of $F_{u} \subset S Y_{u}$. We put

$$
\tilde{v}:=\eta_{u}^{*}(v) \in S X_{u}
$$

We can easily confirm that there exist exactly 6 pairs $\left\{l_{i}, l_{i}^{\prime}\right\}(i=1, \ldots, 6)$ of Y-lifts of bitangents of Q_{u} such that $\left\langle l_{i}, l_{i}^{\prime}\right\rangle_{Y}=1$ and $v=\left[l_{i}\right]+\left[l_{i}^{\prime}\right]$, and that these 12 curves $l_{1}, l_{1}^{\prime}, \ldots, l_{6}, l_{6}^{\prime}$ are distinct. Hence the complete linear system on the $K 3$ surface X_{u} corresponding to $\tilde{v} \in S X_{u}$ has no fixed components. The class \tilde{v} is primitive in $S X_{u}$ with $\langle\tilde{v}, \tilde{v}\rangle_{X}=0$ and $\left\langle\tilde{h}_{u}, \tilde{v}\right\rangle_{X}=4$. Therefore there exists an elliptic fibration on X_{u} such that the class of a fiber is equal to \tilde{v}. We denote this elliptic fibration by $\phi_{v}: X_{u} \rightarrow \mathbb{P}^{1}$.

If $c \in C_{u}$, then $\eta_{u}^{*}(c)$ is an elliptic curve, and hence $\eta_{u}^{*}(c)$ is a smooth fiber of an elliptic fibration of $\phi_{v}: X_{u} \rightarrow \mathbb{P}^{1}$, where $v=[c]$. Conversely, suppose that $(u, v) \in \mathcal{F}$, and let f be a smooth fiber of the elliptic fibration $\phi_{v}: X_{u} \rightarrow \mathbb{P}^{1}$. We denote by $a \subset \mathbb{P}^{2}$ the plane curve $\gamma_{u}(f)$ with the reduced structure. Let d be the degree of a, and δ the mapping degree of $\gamma_{u} \mid f: f \rightarrow a$. Since $\left\langle\tilde{h}_{u}, f\right\rangle_{X}=4$ and $\gamma_{u}: X_{u} \rightarrow \mathbb{P}^{2}$ is Galois, we have $(d, \delta)=(1,4),(2,2)$, or $(4,1)$. If $(d, \delta)=(1,4)$, then $f=\gamma_{u}^{-1}(a)$ is invariant under the action of $\operatorname{Gal}\left(X_{u} / \mathbb{P}^{2}\right)=\left\langle j_{u}\right\rangle$, and hence the class $[f] \in S X_{u}$ is a non-zero multiple of \tilde{h}_{u}, which contradicts $\langle f, f\rangle_{X}=0$. If $(d, \delta)=(4,1)$, then $f, j_{u}(f), j_{u}^{2}(f), j_{u}^{3}(f)$ are distinct curves that intersect over the points of $a \cap Q_{u}$. On the other hand, since $[f]=\eta_{u}^{*}(v) \in \operatorname{Im} \eta_{u}^{*}$, we have $j_{u}^{* 2}([f])=[f]$. This contradicts $\langle f, f\rangle_{X}=0$. Hence $(d, \delta)=(2,2)$, and we see that a is a smooth splitting conic. Note that a is 4 -tangent, because otherwise f would be singular. Thus we have proved that $c \mapsto \eta_{u}^{*}(c)$ gives a bijection
from C_{u} to the union of the sets of smooth fibers of elliptic fibrations $\phi_{v}: X_{u} \rightarrow \mathbb{P}^{1}$, where v runs through F_{u}.

Let $\mathcal{X} \rightarrow \mathcal{U}$ be the universal family of $\left\{X_{u} \mid u \in \mathcal{U}\right\}$, and let $\pi_{\mathcal{F}}: \mathcal{F} \times_{\mathcal{U}} \mathcal{X} \rightarrow \mathcal{F}$ be the pull-back of $\mathcal{X} \rightarrow \mathcal{U}$ by $\mathcal{F} \rightarrow \mathcal{U}$. Let \mathcal{M} be a line bundle on $\mathcal{F} \times \mathcal{U} \mathcal{X}$ such that the class $\left[\mathcal{M} \mid X_{u}\right] \in S X_{u}$ of the line bundle $\mathcal{M} \mid X_{u}$ on $\pi_{\mathcal{F}}^{-1}(u, v)=X_{u}$ is equal to $v \in F_{u}$. Then $\pi_{\mathcal{F} *} \mathcal{M} \rightarrow \mathcal{F}$ is a vector bundle of rank 2 . The fiber over $(u, v) \in \mathcal{F}$ of the \mathbb{P}^{1}-bundle $\mathbb{P}_{*}\left(\pi_{\mathcal{F} *} \mathcal{M}\right) \rightarrow \mathcal{F}$ is identified with the base curve of the elliptic fibration $\phi_{v}: X_{u} \rightarrow \mathbb{P}^{1}$. We can construct \mathcal{C} as the open subset of $\mathbb{P}_{*}\left(\pi_{\mathcal{F} *} \mathcal{M}\right)$ consisting of non-critical points of $\phi_{v}: X_{u} \rightarrow \mathbb{P}^{1}$.

The non-singular varieties \mathcal{C} and $\overline{\mathcal{C}}$ parameterize all pairs (u, c) and (u, \bar{c}), respectively, where $u \in \mathcal{U}$ and $c \in C_{u}, \bar{c} \in \bar{C}_{u}$. Since Φ_{u} and $\bar{\Phi}_{u}$ have connected fibers, we can regard F_{u} as the set of connected families of Y-lifts of 4 -tangent conics of Q_{u}, and \bar{F}_{u} as the set of connected families of 4 -tangent conics. The following observation obtained in the proof of Theorem 4.1 will be used in the next section.

Proposition 4.2. Every connected family $[c] \in F_{u}$ of Y-lifts of splitting conics is a pencil with no base points.

Remark 4.3. A line section Λ_{u} of $Q_{u} \subset \mathbb{P}^{2}$ is a canonical class of the genus 3 curve Q_{u}. Let $\operatorname{Pic}^{0}\left(Q_{u}\right)$ be the Picard group of line bundles of degree 0 of Q_{u}, and let $\operatorname{Pic}^{0}\left(Q_{u}\right)[2]$ be the subgroup of 2-torsion points of $\operatorname{Pic}^{0}\left(Q_{u}\right)$. For a 4-tangent conic \bar{c} of Q_{u}, let $\Theta_{u}(\bar{c})$ be the reduced part of the divisor $\bar{c} \cap Q_{u}$ of Q_{u}. Then the class of the divisor $\Theta_{u}(\bar{c})-\Lambda_{u}$ of degree 0 is a point of $\operatorname{Pic}^{0}\left(Q_{u}\right)[2]-\{0\}$, and this correspondence gives a bijection $\bar{F}_{u} \cong \operatorname{Pic}^{0}\left(Q_{u}\right)[2]-\{0\}$.

5. Proof of the main Results

In this section, we construct the space $\mathcal{Z}^{(m, n)}$ parameterizing all $\mathcal{Q}^{(m, n)}$-curves, and prove Theorems 1.3 and 1.4.
5.1. Deformation types. We fix some notation. For a set A, let $S^{k}(A)$ denote the symmetric product A^{k} / \mathfrak{S}_{k}, where $A^{k}=A \times \cdots \times A(k$ times $)$, and let $S_{0}^{k}(A)$ denote the complement in $S^{k}(A)$ of the image of the big diagonal in A^{k}.

For a morphism $\mathcal{A} \rightarrow \mathcal{U}$, let $\mathcal{S}^{k}(\mathcal{A})$ denote the symmetric product $\mathcal{A}^{k} / \mathfrak{S}_{k}$, where

$$
\mathcal{A}^{k}:=\mathcal{A} \times_{\mathcal{U}} \cdots \times_{\mathcal{U}} \mathcal{A}(k \text { times })
$$

and let $\mathcal{S}_{0}^{k}(\mathcal{A})$ denote the complement in $\mathcal{S}^{k}(\mathcal{A})$ of the image of the big diagonal in \mathcal{A}^{k}. Note that, if \mathcal{A} is smooth over \mathcal{U} with relative dimension 1 , then $\mathcal{S}^{k}(\mathcal{A})$ is smooth over \mathcal{U} with relative dimension k.

Recall that $\overline{\mathcal{L}} \rightarrow \mathcal{U}$ and $\overline{\mathcal{C}} \rightarrow \mathcal{U}$ are the spaces parameterizing all bitangents and all 4-tangent conics of smooth quartic curves, respectively. We put

$$
\mathcal{Z}^{\prime(m, n)}:=\mathcal{S}_{0}^{m}(\overline{\mathcal{L}}) \times \mathcal{U}^{\mathcal{S}_{0}^{n}}(\overline{\mathcal{C}})
$$

which is the space parameterizing all curves Z^{\prime}, where Z^{\prime} is a union of a smooth quartic curve Q, m distinct bitangents of Q, and n distinct 4-tangent conics of Q. Now we can construct the parameter space

$$
\varpi: \mathcal{Z}^{(m, n)} \rightarrow \mathcal{U}
$$

of $\mathcal{Q}^{(m, n)}$-curves as the open subvariety of $\mathcal{Z}^{\prime(m, n)}$ consisting of points corresponding to plane curves Z^{\prime} satisfying conditions (i), (ii), (iii) in Definition 1.1. For a point $\zeta \in \mathcal{Z}^{(m, n)}$, we denote by Z_{ζ} the $\mathcal{Q}^{(m, n)}$-curve corresponding to ζ.

For $u \in \mathcal{U}$, we put

$$
P_{u}^{(m, n)}:=S_{0}^{m}\left(\bar{L}_{u}\right) \times S^{n}\left(\bar{F}_{u}\right) \subset S_{0}^{m}\left(\overline{S Y}_{u}\right) \times S^{n}\left(\overline{S Y}_{u}\right)
$$

The size of $P_{u}^{(m, n)}$ is equal to $d^{(m, n)}$ defined by (1.2). Then we obtain a finite étale covering

$$
\rho: \mathcal{P}^{(m, n)}:=\mathcal{S}_{0}^{m}(\overline{\mathcal{L}}) \times_{\mathcal{U}} \mathcal{S}^{n}(\overline{\mathcal{F}}) \rightarrow \mathcal{U}
$$

of degree $d^{(m, n)}$ parameterizing the family

$$
\left\{P_{u}^{(m, n)} \mid u \in \mathcal{U}\right\}
$$

Using $\bar{\Phi}_{\mathcal{U}}: \overline{\mathcal{C}} \rightarrow \overline{\mathcal{F}}$ in Theorem 4.1, we have a morphism $\theta^{\prime}: \mathcal{Z}^{\prime(m, n)} \rightarrow \mathcal{P}^{(m, n)}$. Restricting θ^{\prime} to the open subvariety $\mathcal{Z}^{(m, n)} \subset \mathcal{Z}^{\prime(m, n)}$, we obtain a morphism

$$
\theta: \mathcal{Z}^{(m, n)} \rightarrow \mathcal{P}^{(m, n)}
$$

which maps $\zeta \in \mathcal{Z}^{(m, n)}$ to

$$
\begin{equation*}
\theta(\zeta):=\left(\left\{\bar{l}_{1}, \ldots, \bar{l}_{m}\right\},\left[\left[\bar{c}_{1}\right], \ldots,\left[\bar{c}_{n}\right]\right]\right) \in P_{\varpi(\zeta)}^{(m, n)} \tag{5.1}
\end{equation*}
$$

where Z_{ζ} has the irreducible components as in (1.1). Thus we obtain the following commutative diagram.

To investigate the image of θ, we put

$$
\mathcal{U}^{\prime}:=\left\{\begin{array}{l|l}
u \in \mathcal{U} & \begin{array}{l}
\text { every bitangent of } Q_{u} \text { is ordinary, and their union } \\
\text { has only ordinary nodes as its singularities }
\end{array}
\end{array}\right\}
$$

which is a Zariski open dense subset of \mathcal{U}.
Lemma 5.1. The morphism $\theta: \mathcal{Z}^{(m, n)} \rightarrow \mathcal{P}^{(m, n)}$ is smooth with each non-empty fiber being an irreducible variety of dimension n. The image of θ contains $\rho^{-1}\left(\mathcal{U}^{\prime}\right)$. In particular, the morphism θ is dominant.
Proof. Since $\bar{\Phi}_{\mathcal{U}}: \overline{\mathcal{C}} \rightarrow \overline{\mathcal{F}}$ is smooth and surjective with each fiber being a Zariski open subset of \mathbb{P}^{1}, the morphism $\theta^{\prime}: \mathcal{Z}^{\prime(m, n)} \rightarrow \mathcal{P}^{(m, n)}$ is smooth and surjective with each fiber being an irreducible variety of dimension n. Suppose that $u \in \mathcal{U}^{\prime}$, and let $p:=\left(\left\{\bar{l}_{1}, \ldots, \bar{l}_{m}\right\},\left[\left[\bar{c}_{1}\right], \ldots,\left[\bar{c}_{n}\right]\right]\right)$ be a point of $P_{u}^{(m, n)}$. By Proposition 4.2 and Bertini's theorem, if we choose each 4 -tangent conic \bar{c}_{j}^{\prime} in the connected family $\left[\bar{c}_{j}\right] \in \bar{F}_{u}$ generally, the curve $Q_{u}+\sum \bar{l}_{i}+\sum \bar{c}_{j}^{\prime}$ satisfies conditions (ii) and (iii) in Definition 1.1. Hence $\theta^{-1}(p)=\theta^{\prime-1}(p) \cap \mathcal{Z}^{(m, n)}$ is non-empty.

Proof of Theorem 1.4. By Lemma 5.1, the connected components of $\mathcal{Z}^{(m, n)}$ are in bijective correspondence with the connected components of $\mathcal{P}^{(m, n)}$, and hence with the $\pi_{1}(\mathcal{U}, b)$-orbits in $P_{b}^{(m, n)}$. By Theorem 3.1, the number $N^{(m, n)}$ of $\pi_{1}(\mathcal{U}, b)$-orbits in $P_{b}^{(m, n)}$ satisfies (1.3), because $\left|W\left(E_{7}\right) /\{ \pm 1\}\right|=1451520$.
5.2. Computation of $N^{(m, n)}$. Recall that Σ_{b} is a negative-definite root lattice of type E_{7}. Let Σ be the negative-definite root lattice of type E_{7} with the standard basis, and let Σ^{\vee} be its dual. According to (3.3) and (4.1), we define the subsets

$$
\bar{L}:=\left\{v \in \Sigma^{\vee} \mid\langle v, v\rangle=-3 / 2\right\} /\{ \pm 1\}
$$

of $\bar{\Sigma}^{\vee}:=\Sigma^{\vee} /\{ \pm 1\}$, and

$$
\bar{F}:=\{v \in \Sigma \mid\langle v, v\rangle=-2\} /\{ \pm 1\}
$$

of $\bar{\Sigma}:=\Sigma /\{ \pm 1\}$. We then put

$$
P^{(m, n)}:=S_{0}^{m}(\bar{L}) \times S^{n}(\bar{F})
$$

The group $W\left(E_{7}\right)$ is generated by seven standard reflections. The permutations on \bar{L} and on \bar{F} induced by these generators are easily calculated. Hence the permutations on $P^{(m, n)}$ induced
by these generators are also calculated. Thus we can compute the orbit decomposition of $P^{(m, n)}$ by $W\left(E_{7}\right)$, and obtain the number $N^{(m, n)}$ of deformation types of $\mathcal{Q}^{(m, n)}$-curves.

Example 5.2. The size $d^{(4,0)}$ of $P^{(4,0)}$ is 20475. The group $W\left(E_{7}\right)$ decomposes this set into three orbits of sizes $315,5040,15120$. Hence $N^{(4,0)}=3$.

Example 5.3. The size $d^{(0,4)}$ of $P^{(0,4)}$ is 720720 . The group $W\left(E_{7}\right)$ decomposes this set into 30 orbits as follows:

$$
\begin{array}{r}
720720=63+945 \times 3+1008 \times 2+1890+2016+3780 \times 2+5040 \times 2+10080+ \\
11340+15120 \times 5+22680+30240 \times 5+45360 \times 2+90720+120960 \times 2 .
\end{array}
$$

Hence $N^{(0,4)}=30$.
Example 5.4. The size $d^{(2,2)}$ of $P^{(2,2)}$ is 762048. The group $W\left(E_{7}\right)$ decomposes this set into 23 orbits as follows:

$$
\begin{array}{r}
762048=378+1890+3780 \times 3+6048+7560 \times 2+12096 \times 2+15120+22680+ \\
30240 \times 3+45360 \times 2+60480 \times 4+120960 \times 2 .
\end{array}
$$

Hence $N^{(2,2)}=23$.
Remark 5.5. For the computation, we used GAP [20], which is good at computations of permutation groups.

5.3. Real quartic curves.

Definition 5.6. Note that $H^{2}\left(\mathbb{P}^{2}, \mathbb{Z}\right) \cong \mathbb{Z}$ has a canonical generator, that is, the class of a line. Let C and C^{\prime} be plane curves with the same homeomorphism type. A homeomorphism $\sigma:\left(\mathbb{P}^{2}, C\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, C^{\prime}\right)$ is said to be orientation-preserving (resp. orientation-reversing) if the action of σ on $H^{2}\left(\mathbb{P}^{2}, \mathbb{Z}\right)$ is the identity (resp. the multiplication by -1).

Example 5.7. Suppose that $\mathcal{Q}^{(m, n)}$-curves Z_{ζ} and $Z_{\zeta^{\prime}}$ are of the same deformation type. Let $\alpha: I \rightarrow \mathcal{Z}^{(m, n)}$ be a path from ζ to ζ^{\prime}, where $I:=[0,1] \subset \mathbb{R}$. By the parallel transport along α, we obtain a homeomorphism $\alpha_{*}:\left(\mathbb{P}^{2}, Z_{\zeta}\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, Z_{\zeta^{\prime}}\right)$. It is obvious that α_{*} is orientationpreserving.

Proposition 5.8. Every $\mathcal{Q}^{(m, n)}$-curve Z_{ζ} admits an orientation-reversing self-homeomorphism $\left(\mathbb{P}^{2}, Z_{\zeta}\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, Z_{\zeta}\right)$.

For the proof of Proposition 5.8, we use a classical result on real quartic curves. We give a structure of the \mathbb{R}-scheme to \mathbb{P}^{2}. We denote by $\Gamma_{\mathbb{R}}(d)$ the space of homogeneous polynomials of degree d on \mathbb{P}^{2} with real coefficients, and consider the real projective space $\mathbb{P}_{*}\left(\Gamma_{\mathbb{R}}(4)\right)$ as a closed subset of $\mathbb{P}_{*}(\Gamma(4))$. We then put

$$
\mathcal{U}_{\mathbb{R}}:=\mathcal{U} \cap \mathbb{P}_{*}\left(\Gamma_{\mathbb{R}}(4)\right)
$$

The topological types of smooth real quartic curves are classified by Zeuthen and Klein, and the result is summarized in [12, Theorem 1.7]. Using this result, we obtain the following:

Theorem 5.9 (Zeuthen (1873) and Klein (1876)). There exists a unique connected component $\mathcal{U}_{\mathbb{R}, 4}$ of $\mathcal{U}_{\mathbb{R}}$ consisting of points $u \in \mathcal{U}_{\mathbb{R}}$ such that the real plane curve $Q_{u}(\mathbb{R})$ is a union of 4 ovals. If $u \in \mathcal{U}_{\mathbb{R}, 4}$, the ovals in $Q_{u}(\mathbb{R})$ are pairwise non-nested, and every bitangent of Q_{u} is defined over \mathbb{R}.

Remark 5.10. For beautiful pictures of real plane quartic curves with real 28 bitangents, see [11] and [14, Section 10.5]. These pictures are in fact defined over \mathbb{Q}, and were obtained by the theory of Mordell-Weil lattices.

For an algebraic variety V defined over \mathbb{R}, we denote by $H^{*}(V, \mathbb{Z})$ the cohomology ring of the topological space $V(\mathbb{C})$ of \mathbb{C}-valued points of V, by

$$
\tau_{V}: V(\mathbb{C}) \xrightarrow{\sim} V(\mathbb{C})
$$

the self-homeomorphism of $V(\mathbb{C})$ obtained by the complex conjugation, and by $V_{\mathbb{C}}$ the variety $V \otimes_{\mathbb{R}} \mathbb{C}$ defined over \mathbb{C}. Let S be an algebraic surface defined over \mathbb{R}, and let C be a reduced irreducible curve on $S_{\mathbb{C}}$. Then there exists a unique reduced irreducible curve C^{\prime} on $S_{\mathbb{C}}$ such that τ_{S} induces an orientation-reversing homeomorphism $C(\mathbb{C}) \xrightarrow{\sim} C^{\prime}(\mathbb{C})$. We denote this curve C^{\prime} by $\tau_{S}[C]$. Then we have

$$
\left[\tau_{S}[C]\right]=-\tau_{S}^{*}([C])
$$

in $H^{2}(S, \mathbb{Z})$. If C is also defined over \mathbb{R}, then $\tau_{S}[C]=C$, and hence $\tau_{S}^{*}([C])=-[C]$. If $H^{2}(S, \mathbb{Z})$ is generated by classes of curves defined over \mathbb{R}, then τ_{S} acts on $H^{2}(S, \mathbb{Z})$ as the multiplication by -1 , and hence, for any curve C (not necessarily defined over \mathbb{R}), we have $\left[\tau_{S}[C]\right]=[C]$ in $H^{2}(S, \mathbb{Z})$.
Lemma 5.11. Let r be a point of $\mathcal{U}_{\mathbb{R}, 4}$. If \bar{c} is a 4-tangent conic of Q_{r}, then the 4-tangent conic $\tau_{\mathbb{P}^{2}}[\bar{c}]$ of $\tau_{\mathbb{P}^{2}}\left[Q_{r}\right]=Q_{r}$ is in the same connected family as \bar{c}.

Proof. Note that, for $\varphi \in \Gamma_{\mathbb{R}}(4)$ and $x \in \mathbb{P}^{2}(\mathbb{R})$, the sign of $\varphi(x)$ is well-defined, because $\lambda^{4}>0$ for any $\lambda \in \mathbb{R}^{\times}$. We choose a defining equation $\varphi \in \Gamma_{\mathbb{R}}(4)$ of Q_{r} in such a way that $\varphi(x)>0$ for any point x of $\mathbb{P}^{2}(\mathbb{R})$ in the outside of the ovals of $Q_{r}(\mathbb{R})$. We let Y_{r} be defined over \mathbb{R} by $w^{2}=\varphi$, and consider the self-homeomorphism $\tau_{Y}: Y_{r}(\mathbb{C}) \xrightarrow{\sim} Y_{r}(\mathbb{C})$ given by the complex conjugation. For any bitangent \bar{l} of Q_{r}, each of its Y-lifts l satisfies $\tau_{Y}[l]=l$, because $\varphi(x) \geq 0$ for any point x of $\bar{l}(\mathbb{R})$. Since the classes of these curves l span $S Y_{r}=H^{2}\left(Y_{r}, \mathbb{Z}\right)$, we see that τ_{Y} acts on $S Y_{r}$ as the multiplication by -1 . Therefore, for any curve C on Y_{r}, we have $\left[\tau_{Y}[C]\right]=[C]$. In particular, if $c \subset Y_{r}$ is a Y-lift of \bar{c}, then $\tau_{Y}[c]$ is a Y-lift of the 4 -tangent conic $\tau_{\mathbb{P}^{2}}[\bar{c}]$. Then $\left[\tau_{Y}[c]\right]=[c]$ in $S Y_{r}$ implies that $\tau_{\mathbb{P}^{2}}[\bar{c}]$ and \bar{c} belong to the same connected family of 4 -tangent conics.

Proof of Proposition 5.8. Since $\mathcal{U}_{\mathbb{R}, 4}$ is open in $\mathbb{P}_{*}\left(\Gamma_{\mathbb{R}}(4)\right)$, it follows that $\mathcal{U}_{\mathbb{R}, 4}$ is Zariski dense in \mathcal{U}, and hence there exists a point $r \in \mathcal{U}_{\mathbb{R}, 4} \cap \mathcal{U}^{\prime}$. By Lemma 5.1, we see that $\varpi^{-1}(r)$ intersects every connected component of $\mathcal{Z}^{(m, n)}$. Let ξ be a point of $\varpi^{-1}(r)$ that belongs to the same connected component as ζ, and let

$$
Z_{\xi}=Q_{r}+\bar{l}_{1}^{\prime}+\cdots+\bar{l}_{m}^{\prime}+\bar{c}_{1}^{\prime}+\cdots+\bar{c}_{n}^{\prime}
$$

be the decomposition of Z_{ξ} into irreducible components. Remark that Q_{r} and all of its bitangents are defined over \mathbb{R} by the definition of $\mathcal{U}_{\mathbb{R}, 4}$ (see Theorem 5.9). We choose a path $\alpha: I \rightarrow \mathcal{Z}^{(m, n)}$ from ζ to ξ. Then we obtain an orientation-preserving homeomorphism

$$
\alpha_{*}:\left(\mathbb{P}^{2}, Z_{\zeta}\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, Z_{\xi}\right)
$$

For simplicity, we write τ instead of $\tau_{\mathbb{P}^{2}}$. We have an orientation-reversing homeomorphism

$$
\tau:\left(\mathbb{P}^{2}, Z_{\xi}\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, \tau\left[Z_{\xi}\right]\right)
$$

obtained by the complex conjugation. Since

$$
\tau\left[Z_{\xi}\right]=Q_{r}+\bar{l}_{1}^{\prime}+\cdots+\bar{l}_{m}^{\prime}+\tau\left[\bar{c}_{1}^{\prime}\right]+\cdots+\tau\left[\bar{c}_{n}^{\prime}\right]
$$

and, for $j=1, \ldots, n$, the 4 -tangent conic $\tau\left[\bar{c}_{j}^{\prime}\right]$ of $\tau\left[Q_{r}\right]=Q_{r}$ belongs to the same connected family as \bar{c}_{j}^{\prime} by Lemma 5.11 , we see that $\mathcal{Q}^{(m, n)}$-curves $\tau\left[Z_{\xi}\right]$ and Z_{ξ} have the same deformation type, and we have an orientation-preserving homeomorphism

$$
\beta_{*}:\left(\mathbb{P}^{2}, \tau\left[Z_{\xi}\right]\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, Z_{\xi}\right)
$$

Composing $\alpha_{*}, \tau, \beta_{*}$ and α_{*}^{-1}, we obtain an orientation-reversing self-homeomorphism of $\left(\mathbb{P}^{2}, Z_{\zeta}\right)$.
5.4. Homeomorphism types. Let ζ be a point of $\mathcal{Z}^{(m, n)}$ such that Z_{ζ} has the decomposition

$$
Z=Q+\bar{l}_{1}+\cdots+\bar{l}_{m}+\bar{c}_{1}+\cdots+\bar{c}_{n}
$$

We consider another point $\zeta^{\prime} \in \mathcal{Z}^{(m, n)}$ with the decomposition

$$
Z_{\zeta^{\prime}}=Q_{u^{\prime}}+\bar{l}_{1}^{\prime}+\cdots+\bar{l}_{m}^{\prime}+\bar{c}_{1}^{\prime}+\cdots+\bar{c}_{n}^{\prime}
$$

Recall that the involution ι_{u} of Y_{u} acts on the orthogonal complement Σ_{u} of $h_{u} \in S Y_{u}$ as -1 . Let $g: S Y_{u} \xrightarrow{\sim} S Y_{u^{\prime}}$ be an isometryof lattices. Suppose that g maps h_{u} to $h_{u^{\prime}}$. Then we have $g \circ \iota_{u}=\iota_{u^{\prime}} \circ g$. Moreover, by definitions (3.3) and (4.1), the isometry g maps L_{u} to $L_{u^{\prime}}$ and F_{u} to $F_{u^{\prime}}$. Therefore g induces a bijection $P_{u}^{(m, n)} \xrightarrow{\sim} P_{u^{\prime}}^{(m, n)}$.

Theorem 1.3 is an immediate consequence of the following:
Theorem 5.12. The following are equivalent:
(i) ζ and ζ^{\prime} belong to the same connected component of $\mathcal{Z}^{(m, n)}$,
(ii) $\theta(\zeta)$ and $\theta\left(\zeta^{\prime}\right)$ belong to the same connected component of $\mathcal{P}^{(m, n)}$,
(iii) there exists an isometry $g: S Y_{u} \xrightarrow{\sim} S Y_{u^{\prime}}$ of lattices that maps h_{u} to $h_{u^{\prime}}$ and such that the induced bijection $P_{u}^{(m, n)} \xrightarrow{\sim} P_{u^{\prime}}^{(m, n)}$ maps $\theta(\zeta)$ to $\theta\left(\zeta^{\prime}\right)$, and
(iv) there exists a homeomorphism $\left(\mathbb{P}^{2}, Z_{\zeta}\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, Z_{\zeta^{\prime}}\right)$.

Proof. By Proposition 5.8, condition (iv) is equivalent to the following:
$(\text { iv })^{\prime}$ there exists an orientation-preserving homeomorphism $\left(\mathbb{P}^{2}, Z_{\zeta}\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, Z_{\zeta^{\prime}}\right)$.
We will show that (i), (ii), (iii) and (iv) ${ }^{\prime}$ are equivalent. The implication (i) \Longleftrightarrow (ii) follows from Lemma 5.1, and (i) $\Longrightarrow(i v)^{\prime}$ follows from Example 5.7.

We show (iv) ${ }^{\prime} \Longrightarrow$ (iii). Suppose that $\sigma:\left(\mathbb{P}^{2}, Z_{\zeta}\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, Z_{\zeta^{\prime}}\right)$ is an orientation-preserving homeomorphism. We can assume, after renumbering the curves, that σ induces homeomorphisms $\bar{l}_{i} \xrightarrow{\sim} \bar{l}_{i}^{\prime}$ and $\bar{c}_{j} \xrightarrow{\sim} \bar{c}_{j}^{\prime}$ that preserve the orientation. We have a homeomorphism $\sigma_{Y}: Y_{u} \xrightarrow{\sim} Y_{u^{\prime}}$ that covers σ, and σ_{Y} induces an isometry

$$
\sigma_{S Y}: S Y_{u} \xrightarrow{\sim} S Y_{u^{\prime}}
$$

which maps h_{u} to $h_{u^{\prime}}$. If $l_{i} \subset Y_{u}$ is a Y-lift of a bitangent $\bar{l}_{i} \subset Z_{\zeta}$, there exists a Y-lift $l_{i}^{\prime} \subset Y_{u^{\prime}}$ of the bitangent $\bar{l}_{i}^{\prime} \subset Z_{\zeta^{\prime}}$ such that σ_{Y} induces a homeomorphism $l_{i} \xrightarrow{\sim} l_{i}^{\prime}$ preserving the orientation. In particular, we have $\sigma_{S Y}\left(\left[l_{i}\right]\right)=\left[l_{i}^{\prime}\right]$. The same holds for a Y-lift $c_{j} \subset Y_{u}$ of a 4-tangent conic $\bar{c}_{j} \subset Z_{\zeta}$. Hence the bijection $P_{u}^{(m, n)} \xrightarrow{\sim} P_{u^{\prime}}^{(m, n)}$ induced by the isometry $\sigma_{S Y}$ maps $\theta(\zeta)$ to $\theta\left(\zeta^{\prime}\right)$. Thus (iii) holds.

We show (iii) \Longrightarrow (ii). Suppose that (iii) holds. We choose a path $\beta: I \rightarrow \mathcal{U}$ from u to the base-point b and a path $\beta^{\prime}: I \rightarrow \mathcal{U}$ from u^{\prime} to b, and consider the isometries

$$
\beta_{*}: S Y_{u} \xrightarrow{\sim} S Y_{b}, \quad \beta_{*}^{\prime}: S Y_{u^{\prime}} \xrightarrow{\sim} S Y_{b}
$$

obtained by the parallel transports along β and β^{\prime}. Note that $\beta_{*}\left(h_{u}\right)=h_{b}$ and $\beta_{*}^{\prime}\left(h_{u^{\prime}}\right)=h_{b}$. Hence $\beta_{*}^{\prime} \circ g \circ \beta_{*}^{-1}$ is an element of $\mathrm{O}\left(S Y_{b}, h_{b}\right)$. By Theorem 3.1, there exists a loop $\alpha: I \rightarrow \mathcal{U}$ with the base point b such that

$$
\alpha_{*}=\beta_{*}^{\prime} \circ g \circ \beta_{*}^{-1}
$$

Therefore the isometry $g: S Y_{u} \xrightarrow{\sim} S Y_{u^{\prime}}$ is equal to the parallel transport γ_{*} along the path $\gamma:=\beta^{\prime-1} \alpha \beta$ from u to u^{\prime}. Let

$$
\tilde{\gamma}: I \rightarrow \mathcal{P}^{(m, n)}
$$

be the lift of γ such that $\tilde{\gamma}(0)=\theta(\zeta)$. Since $g=\gamma_{*}$ maps $\theta(\zeta)$ to $\theta\left(\zeta^{\prime}\right)$, we see that $\tilde{\gamma}(1)=\theta\left(\zeta^{\prime}\right)$. Therefore $\theta(\zeta)$ and $\theta\left(\zeta^{\prime}\right)$ are in the same connected component of $\mathcal{P}^{(m, n)}$.

6. Geometry of the $K 3$ surface X_{u}

We investigate the connected families of 4 -tangent conics more closely for a general point $u \in \mathcal{U}$. Our main result of this section is as follows.

Theorem 6.1. Suppose that $u \in \mathcal{U}$ is general. Then each connected family of 4-tangent conics \bar{c} of Q_{u} is parameterized by a rational curve minus $12+6$ points. A member \bar{c} of this family becomes a 3-tangent conic at each of 12 punctured points, and \bar{c} degenerates into a union of two distinct bitangents at each of the remaining 6 punctured points.

For the proof, we add the following easy result to Proposition 2.4.
Proposition 6.2. Let \bar{c} be a 3-tangent conic of Q_{u}. Then $\gamma_{u}^{*}(\bar{c})$ is a union of two one-nodal rational curves.

Recall that the double covering $\eta_{u}: X_{u} \rightarrow Y_{u}$ induces a primitive embedding of lattices $\eta_{u}^{*}: S Y_{u}(2) \hookrightarrow S X_{u}$.
Proposition 6.3. If $u \in \mathcal{U}$ is general, then η_{u}^{*} is an isomorphism.
Proof. Kondo [10] studied the moduli of genus-3 curves by considering the periods of $K 3$ surfaces X that are cyclic covers of \mathbb{P}^{2} of degree 4 branched along quartic curves $Q \subset \mathbb{P}^{2}$. Let j denote the generator of $\operatorname{Gal}\left(X / \mathbb{P}^{2}\right) \cong \mu_{4}$ that acts on $H^{2,0}(X)$ as $\sqrt{-1}$. Kondo exhibits an action of the cyclic group μ_{4} on the $K 3$ lattice

$$
\mathbf{L}:=E_{8}^{\oplus 2} \oplus U^{\oplus 3}
$$

that is obtained by a marking $H^{2}(X, \mathbb{Z}) \cong \mathbf{L}$. Let \mathbf{L}_{S} and \mathbf{L}_{T} be the kernel of $j^{* 2}-1$ and of $j^{* 2}+1$ on \mathbf{L}, respectively. Then \mathbf{L}_{S} is of rank 8, and, via the marking, equal to the image of the pull-back of $H^{2}(Y, \mathbb{Z})(2)$ by the double covering $X \rightarrow Y:=X /\left\langle j^{2}\right\rangle$. The period $H^{2,0}(X)$ is a point of $\mathbb{P}_{*}\left(V_{\sqrt{-1}}\right)$, where $V_{\sqrt{-1}}$ is the kernel of $j^{*}-\sqrt{-1}$ on $\mathbf{L}_{T} \otimes \mathbb{C}$. We have $\operatorname{dim} \mathbb{P}_{*}\left(V_{\sqrt{-1}}\right)=6$. The result of [10] implies that, when Q varies, the point $H^{2,0}(X)$ of $\mathbb{P}_{*}\left(V_{\sqrt{-1}}\right)$ sweeps an open subset of $\mathbb{P}_{*}\left(V_{\sqrt{-1}}\right)$.

We fix a marking $H^{2}\left(X_{u}, \mathbb{Z}\right) \cong \mathbf{L}$. Since $u \in \mathcal{U}$ is general, the period $H^{2,0}\left(X_{u}\right)$ is general in $\mathbb{P}_{*}\left(V_{\sqrt{-1}}\right)$. Since $\mathbf{L}_{T} \otimes \mathbb{C}=V_{\sqrt{-1}} \oplus \overline{V_{\sqrt{-1}}}$, the minimal \mathbb{Z}-submodule M of \mathbf{L} such that $M \otimes \mathbb{C}$ contains $H^{2,0}\left(X_{u}\right)$ is equal to \mathbf{L}_{T}, and hence its orthogonal complement $M^{\perp}=S X_{u}$ is equal to $\mathbf{L}_{S}=\eta_{u}^{*}\left(S Y_{u}(2)\right)$.

Let Rats $\left(X_{u}\right)$ denote the set of rational curves on X_{u}, and $\operatorname{Ells}\left(X_{u}\right)$ the set of elliptic fibrations on X_{u}.
Proposition 6.4. Suppose that $u \in \mathcal{U}$ is general. Then Rats $\left(X_{u}\right)$ is equal to the set

$$
\widetilde{L}_{u}:=\left\{\eta_{u}^{*}(l) \mid l \in L_{u}\right\}
$$

of 56 smooth rational curves on X_{u}.
This proposition is proved by Proposition 6.3 and [13, Proposition 98]. See also [13, Remark 99]. We give a proof, however, because the argument is also used in the proof of Proposition 6.5 below. Recall from the proof of Theorem 4.1 that, for $v \in F_{u}$, there exists an elliptic fibration $\phi_{v}: X_{u} \rightarrow \mathbb{P}^{1}$ such that the class of a fiber of ϕ_{v} is $\eta_{u}^{*}(v)$.

Proposition 6.5. Suppose that $u \in \mathcal{U}$ is general. Then $v \mapsto \phi_{v}$ gives a bijection $F_{u} \cong \operatorname{Ells}\left(X_{u}\right)$. Each fibration ϕ_{v} has no section. The singular fibers of ϕ_{v} consist of 6 fibers of type I_{2} and 12 fibers of type I_{1}.
Proof of Propositions 6.4 and 6.5. The space

$$
\left\{v \in S X_{u} \otimes \mathbb{R} \mid\langle v, v\rangle_{X}>0\right\}
$$

has two connected components. Let \mathcal{P}_{u} be the connected component containing the ample class \tilde{h}_{u}. For a vector $v \in S X_{u} \otimes \mathbb{R}$ with $\langle v, v\rangle_{X}<0$, let $[v]^{\perp}$ be the hyperplane of $S X_{u} \otimes \mathbb{R}$ defined by $\langle x, v\rangle_{X}=0$, and we put $(v)^{\perp}:=[v]^{\perp} \cap \mathcal{P}_{u}$. We then put

$$
N_{u}:=\left\{v \in \mathcal{P}_{u} \mid\langle v, \Gamma\rangle_{X} \geq 0 \text { for all curves } \Gamma \subset X_{u}\right\}
$$

It is well known that N_{u} is equal to

$$
\left\{v \in \mathcal{P}_{u} \mid\langle v, \Gamma\rangle_{X} \geq 0 \text { for all } \Gamma \in \operatorname{Rats}\left(X_{u}\right)\right\}
$$

and that each $\Gamma \in \operatorname{Rats}\left(X_{u}\right)$ defines a wall of the cone N_{u}, that is, $(\Gamma)^{\perp} \cap N_{u}$ contains a non-empty open subset of $(\Gamma)^{\perp}$. Let \bar{N}_{u} be the closure of N_{u} in $S X_{u} \otimes \mathbb{R}$. For the proof of Proposition 6.4, it is enough to show that \bar{N}_{u} is equal to

$$
\bar{N}_{u}^{\prime}:=\left\{v \in S X_{u} \otimes \mathbb{R} \mid\langle v, \tilde{l}\rangle_{X} \geq 0 \text { for all } \tilde{l} \in \widetilde{L}_{u}\right\}
$$

A face of the cone \bar{N}_{u}^{\prime} is a closed subset F of \bar{N}_{u}^{\prime} of the form $F=V \cap \bar{N}_{u}^{\prime}$, where V is an intersection of some of the hyperplanes $[\tilde{l}]^{\perp}\left(\tilde{l} \in \widetilde{L}_{u}\right)$ such that F contains a non-empty open subset of V. We say that V is the supporting linear subspace of the face F, and put $\operatorname{dim} F:=\operatorname{dim} V$. A ray is a 1-dimensional face. For the proof of $\bar{N}_{u}=\bar{N}_{u}^{\prime}$, it is enough to show that all rays of \bar{N}_{u}^{\prime} are contained in \bar{N}_{u}. We can calculate all the faces F of \bar{N}_{u}^{\prime} by descending induction on $d:=\operatorname{dim} F$ using linear programming method (see [17, Section 2.2]). The result is as follows. Suppose that $d \geq 2$. Then a linear subspace

$$
\begin{equation*}
V=\left[\tilde{l}_{1}\right]^{\perp} \cap \cdots \cap\left[\tilde{l}_{k}\right]^{\perp} \tag{6.1}
\end{equation*}
$$

with $\tilde{l}_{1}, \ldots, \tilde{l}_{k} \in \widetilde{L}_{u}$ is the supporting linear subspace of a face F with $\operatorname{dim} F=d$ if and only if $k=8-d$ and $\tilde{l}_{1}, \ldots, \tilde{l}_{k}$ are disjoint from each other, that is, their dual graph is the Dynkin diagram of type $(8-d) A_{1}$. Suppose that $d=1$. Then a linear subspace V as (6.1) is the supporting linear subspace of a ray F if and only if one of the following holds:
$\left(7 A_{1}\right) k=7$ and the dual graph of $\tilde{l}_{1}, \ldots, \tilde{l}_{7}$ is the Dynkin diagram of type $7 A_{1}$. In this case, F is generated by a vector $v \in S X_{u}$ with $\left\langle\tilde{h}_{u}, v\right\rangle_{X}=6$ and $\langle v, v\rangle_{X}=2$. There exist exactly 576 rays of this type.
$\left(6 \widetilde{A}_{1}\right) k=12$ and the dual graph of $\tilde{l}_{1}, \ldots, \tilde{l}_{12}$ is the Dynkin diagram of type $6 \widetilde{A}_{1}$, where \widetilde{A}_{1} is $0=0$. In this case, F is generated by a primitive vector \tilde{v} with $\left\langle\tilde{h}_{u}, \tilde{v}\right\rangle_{X}=4$ and $\langle\tilde{v}, \tilde{v}\rangle_{X}=0$. There exist exactly 126 rays of this type, and these generators \tilde{v} are equal to $\eta_{u}^{*}(v)$ for some $v \in F_{u}$.
In Table 6.1, the numbers of faces of \bar{N}_{u}^{\prime} are given.
Suppose that there exists a ray F of \bar{N}_{u}^{\prime} not contained in \bar{N}_{u}. Then the generating class $v \in S X_{u}$ of F given above is effective but not nef. Let D be an effective divisor of X_{u} such that $[D]=v$. Then D contains a smooth rational curve Γ with $\langle\Gamma, v\rangle_{X}<0$ as an irreducible component. Since \tilde{h}_{u} is ample, the (-2)-vector $r=[\Gamma]$ satisfies $\left\langle\tilde{h}_{u}, r\right\rangle_{X}<\left\langle\tilde{h}_{u}, v\right\rangle_{X} \leq 6$. We make the set of all (-2)-vectors $r^{\prime} \in S X_{u}$ with $\left\langle\tilde{h}_{u}, r^{\prime}\right\rangle_{X}=1, \ldots, 5$, and confirm that this set is equal to the set of classes of \widetilde{L}_{u}. In particular, it contains no element r^{\prime} satisfying $\left\langle r^{\prime}, v\right\rangle_{X}<0$. This contradiction shows $\bar{N}_{u}^{\prime}=\bar{N}_{u}$, and $\operatorname{Rats}\left(X_{u}\right)=\widetilde{L}_{u}$ is proved.

It is well known that there exists a bijection between $\operatorname{Ells}\left(X_{u}\right)$ and the set of rays contained in $\bar{N}_{u} \cap \partial \overline{\mathcal{P}}_{u}$. Hence we have $\left|\operatorname{Ells}\left(X_{u}\right)\right|=126$, and $v \mapsto \phi_{v}$ gives a bijection from F_{u} to Ells $\left(X_{u}\right)$. Therefore, as was shown in the proof of Theorem 4.1, every fiber f of any elliptic fibration ϕ_{v} is a double cover of a splitting conic of Q_{u}. The class of f is equal to $\eta_{u}^{*}(v)$. Since no element $\tilde{l} \in \operatorname{Rats}\left(X_{u}\right)$ satisfies $\langle f, \tilde{l}\rangle_{X}=1$, the fibration ϕ_{v} has no section. Since the dual graph of the set of $\tilde{l} \in \operatorname{Rats}\left(X_{u}\right)$ with $\langle f, \tilde{l}\rangle_{X}=0$ is of type $6 \tilde{A}_{1}$, the fibration ϕ_{v} has exactly 6 reducible fibers, each of which is either of type I_{2} or of type III. If $\tilde{l}_{i}, \tilde{l}_{j} \in \operatorname{Rats}\left(X_{u}\right)$ are in the same fiber of ϕ_{v}, then they satisfy $\left\langle\tilde{l}_{i}, \tilde{l}_{j}\right\rangle_{X}=2$ and hence $\bar{l}_{i}:=\gamma_{u}\left(\tilde{l}_{i}\right)$ and $\bar{l}_{j}:=\gamma_{u}\left(\tilde{l}_{j}\right)$ are distinct bitangents of

$\operatorname{dim} F$	7	6	5	4	3	2	1
$\#$	56	756	4032	10080	12096	6048	$576+126$

Table 6.1. Numbers of faces F
Q_{u} by Table 2.1. Since $u \in \mathcal{U}$ is general, the intersection point of \bar{l}_{i} and \bar{l}_{j} is not on Q_{u}. Hence every reducible fiber of ϕ_{v} is of type I_{2}. The irreducible singular fibers are either of type I_{1} or of type II. By Lemma 2.2 and Proposition 6.2, we see that all irreducible singular fibers must be of type I_{1}. Calculating the Euler number, we conclude that the number of singular fibers of type I_{1} is 12 .

Remark 6.6. The set of 576 rays of type $7 A_{1}$ is in bijective correspondence with the set $L_{u}^{\{7\}}$ in the proof of Theorem 3.1. A ray F of type $7 A_{1}$ corresponds to a 7 -tuple $\left\{l_{1}, \ldots, l_{7}\right\} \in L_{u}^{\{7\}}$ as follows. The generator v of F with $\langle v, v\rangle_{X}=2$ is the class of the pull-back of a line of a plane \mathbf{P} by the double covering $X_{u} \rightarrow Y_{u} \rightarrow \mathbf{P}$, where $Y_{u} \rightarrow \mathbf{P}$ is the blowing down of the (-1)-curves l_{1}, \ldots, l_{7}.

Proof of Theorem 6.1. In fact, the proof was already given in the last paragraph of the proof of Proposition 6.5.

7. Configurations of Y-Lifts

Throughout this section, let u be a general point of \mathcal{U}.
7.1. Lemmas on quartic polynomials. Let $\left[d_{1}, \ldots, d_{m}\right]$ be a list of positive integers satisfying $d_{1}+\cdots+d_{m}=4$. We put

$$
\Gamma\left(d_{1}, \ldots, d_{m}: 2\right):=\Gamma\left(d_{1}\right) \times \cdots \times \Gamma\left(d_{m}\right) \times \Gamma(2)
$$

and denote by $\psi_{\left[d_{1}, \ldots, d_{m}\right]}: \Gamma\left(d_{1}, \ldots, d_{m}: 2\right) \rightarrow \Gamma(4)$ the morphism

$$
\left(f_{1}, \cdots, f_{m}, q\right) \mapsto f_{1} \cdots f_{m}+q^{2}
$$

Lemma 7.1. The morphism $\psi_{\left[d_{1}, \ldots, d_{m}\right]}$ is dominant.
Proof. It is enough to show that $\psi_{[1,1,1,1]}$ is dominant, and then, it suffices to find a point P of $\Gamma(1,1,1,1: 2)$ at which the differential of $\psi:=\psi_{[1,1,1,1]}$ is of $\operatorname{rank} \operatorname{dim} \Gamma(4)=15$. By choosing points P randomly and calculating the rank of $d_{P} \psi$, we can easily find such a point.

Definition 7.2. For $\left[d_{1}, \ldots, d_{m}\right]$ with $d_{1}+\cdots+d_{m}=4$, we have an open dense subset $\mathcal{V}_{\left[d_{1}, \ldots, d_{m}\right]} \subset \Gamma\left(d_{1}, \ldots, d_{m}: 2\right)$ and a dominant morphism

$$
\Psi_{\left[d_{1}, \ldots, d_{m}\right]}: \mathcal{V}_{\left[d_{1}, \ldots, d_{m}\right]} \rightarrow \mathcal{U}
$$

such that, for $p=\left(f_{1}, \ldots, f_{m}, q\right) \in \mathcal{V}_{\left[d_{1}, \ldots, d_{m}\right]}$, the quartic curve corresponding $\Psi_{\left[d_{1}, \ldots, d_{m}\right]}(p) \in \mathcal{U}$ is defined by $f_{1} \cdots f_{m}+q^{2}=0$.

Lemma 7.3. If Q_{u} is defined by $f+q^{2}=0$ with $f \in \Gamma(4)$ and $q \in \Gamma(2)$, then Y_{u} has a divisor that is mapped isomorphically to the divisor $\{f=0\}$ of \mathbb{P}^{2}.

Proof. The surface Y_{u} is defined by $w^{2}=f+q^{2}$, where w is a new variable, and hence contains a divisor defined by $f=w-q=0$. It is obvious that π_{u} maps this divisor to the divisor $\{f=0\}$ of \mathbb{P}^{2} isomorphically.
7.2. Triangles of bitangents. Recall that L_{u} is the set of Y-lifts l of bitangents $\bar{l} \in \bar{L}_{u}$ of Q_{u}.

Definition 7.4. A triangle on Y_{u} is a subset $\left\{l_{1}, l_{2}, l_{3}\right\}$ of L_{u} such that

$$
\left\langle l_{1}, l_{2}\right\rangle_{Y}=\left\langle l_{2}, l_{3}\right\rangle_{Y}=\left\langle l_{3}, l_{1}\right\rangle_{Y}=1
$$

A liftable triangle of bitangents of Q_{u} is a subset $\left\{\bar{l}_{1}, \bar{l}_{2}, \bar{l}_{3}\right\}$ of \bar{L}_{u} that is the image of a triangle on Y_{u} by π_{u}.

Let $\bar{l}_{1}, \bar{l}_{2}, \bar{l}_{3}$ be bitangents of Q_{u}. We choose Y-lifts $l_{1}, l_{2}, l_{3} \in L_{u}$ of $\bar{l}_{1}, \bar{l}_{2}, \bar{l}_{3}$ in such a way that $\left\langle l_{1}, l_{2}\right\rangle_{Y}=\left\langle l_{2}, l_{3}\right\rangle_{Y}=1$. Then $\left\{\bar{l}_{1}, \bar{l}_{2}, \bar{l}_{3}\right\}$ is liftable if and only if $\left\langle l_{3}, l_{1}\right\rangle_{Y}=1$.

Let T_{u} be the set of triangles on Y_{u}. We have calculated $L_{u} \subset S Y_{u}$ explicitly. Using this data, we enumerate T_{u}, and see that $\left|T_{u}\right|=2520$. Let

$$
\bar{T}_{u}:=T_{u} /\left\langle\iota_{u}\right\rangle
$$

be the set of liftable triangles of bitangents of Q_{u}.
Corollary 7.5. There exist exactly $\left|\bar{T}_{u}\right|=1260$ liftable triangles.
By Theorem 3.1, we obtain the following:
Proposition 7.6. By the monodromy, $\pi_{1}(\mathcal{U}, b)$ acts transitively on T_{b} and hence on \bar{T}_{b}.
Proposition 7.7. Let $\bar{l}_{1}, \bar{l}_{2}, \bar{l}_{3}$ be bitangents of Q_{u}. Suppose that \bar{l}_{i} is defined by $f_{i}=0$ for $i=1, \ldots, 3$, where $f_{i} \in \Gamma(1)$. Then $\left\{\bar{l}_{1}, \bar{l}_{2}, \bar{l}_{3}\right\}$ is liftable if and only if there exist polynomials $f_{4} \in \Gamma(1)$ and $q \in \Gamma(2)$ such that Q_{u} is defined by $f_{1} f_{2} f_{3} f_{4}+q^{2}=0$.

Proof. The if-part follows from Lemma 7.3. Let $\bar{\tau}: \overline{\mathcal{T}} \rightarrow \mathcal{U}$ be the finite étale covering obtained from the family $\left\{\bar{T}_{u} \mid u \in \mathcal{U}\right\}$. Then $\overline{\mathcal{T}}$ is irreducible by Proposition 7.6. Let $p:=\left(f_{1}^{\prime}, \ldots, f_{4}^{\prime}, q^{\prime}\right)$ be a point of $\mathcal{V}_{[1,1,1,1]}$, and we put

$$
u^{\prime}:=\Psi_{[1,1,1,1]}(p) \in \mathcal{U}
$$

where $\mathcal{V}_{[1,1,1,1]}$ and $\Psi_{[1,1,1,1]}$ are given in Definition 7.2. Let $\bar{l}_{i}^{\prime} \subset \mathbb{P}^{2}$ be the line $\left\{f_{i}^{\prime}=0\right\}$. By the if-part, we have $\left\{\bar{l}_{1}^{\prime}, \bar{l}_{2}^{\prime}, \bar{l}_{3}^{\prime}\right\} \in \bar{T}_{u^{\prime}}$. By $p \mapsto\left\{\bar{l}_{1}^{\prime}, \bar{l}_{2}^{\prime}, \bar{l}_{3}^{\prime}\right\}$, we obtain a morphism $\Psi_{\overline{\mathcal{T}}}: \mathcal{V}_{[1,1,1,1]} \rightarrow \overline{\mathcal{T}}$. Since $\bar{\tau} \circ \Psi_{\overline{\mathcal{T}}}=\Psi_{[1,1,1,1]}, \bar{\tau}$ is étale, $\overline{\mathcal{T}}$ is irreducible, and $\Psi_{[1,1,1,1]}$ is dominant, we conclude that $\Psi_{\overline{\mathcal{T}}}$ is dominant. Since $u \in \mathcal{U}$ is general, we obtain the proof.

Corollary 7.8. There exists a set \bar{R}_{u} consisting of 315 subsets $\left\{\bar{l}_{a}, \bar{l}_{b}, \bar{l}_{c}, \bar{l}_{d}\right\} \subset \bar{L}_{u}$ of size 4 with the following properties: a subset $\left\{\bar{l}_{i}, \bar{l}_{j}, \bar{l}_{k}\right\} \subset \bar{L}_{u}$ of size 3 is liftable if and only if there exists an element $\left\{\bar{l}_{a}, \bar{l}_{b}, \bar{l}_{c}, \bar{l}_{d}\right\} \in \bar{R}_{u}$ containing $\left\{\bar{l}_{i}, \bar{l}_{j}, \bar{l}_{k}\right\}$.
7.3. Pairs of splitting conics. Recall that $F_{u} \subset S Y_{u}$ is the set of classes [c] of Y-lifts c of 4-tangent conics \bar{c} of Q_{u}, and that $\bar{F}_{u}=F_{u} /\left\langle\iota_{u}\right\rangle$ is regarded as the set of connected families of 4-tangent conics of Q_{u}, or equivalently as the set of connected families of splitting conics of Q_{u}. For a splitting conic \bar{c}, let $[\bar{c}] \in \bar{F}_{u}$ denote the connected family containing \bar{c}. By Theorem 3.1, we obtain the following:

Proposition 7.9. By the monodromy, $\pi_{1}(\mathcal{U}, b)$ acts transitively on F_{b} and hence on \bar{F}_{b}.
Definition 7.10. Let \bar{c} be a splitting conic of Q_{u}. We say that a decomposition $\pi_{u}^{*}(\bar{c})=c+c^{\prime}$ is normal if each of c and c^{\prime} is a Y-lift of \bar{c}.

Note that, if \bar{c} is smooth, then the decomposition $\pi_{u}^{*}(\bar{c})=c+c^{\prime}$ is normal, whereas if \bar{c} is a sum of two bitangents $\bar{l}+\bar{l}^{\prime}$, then $\pi_{u}^{*}(\bar{c})=c+c^{\prime}$ being normal means that $c=l+l^{\prime}$ with $\left\langle l, l^{\prime}\right\rangle_{Y}=1$.

Definition 7.11. Let \bar{c}_{1} and \bar{c}_{2} be splitting conics of Q_{u}, and let $\pi_{u}^{*}\left(\bar{c}_{1}\right)=c_{1}+c_{1}^{\prime}$ and $\pi_{u}^{*}\left(\bar{c}_{2}\right)=c_{2}+c_{2}^{\prime}$ be the normal decompositions. We put

$$
I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right):=\left[\begin{array}{ll}
\left\langle c_{1}, c_{2}\right\rangle_{Y} & \left\langle c_{1}, c_{2}^{\prime}\right\rangle_{Y} \\
\left\langle c_{1}^{\prime}, c_{2}\right\rangle_{Y} & \left\langle c_{1}^{\prime}, c_{2}^{\prime}\right\rangle_{Y}
\end{array}\right] .
$$

Since we can make switchings $c_{1} \leftrightarrow c_{1}^{\prime}$ and $c_{2} \leftrightarrow c_{2}^{\prime}$, the matrix $I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)$ is well-defined only up to the transpositions of the two rows and of the two columns.

We have calculated $F_{u} \subset S_{u}$ explicitly. Using this data, we see that the matrix $I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)$ is one of the following:

$$
\begin{aligned}
I_{A} & :=\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \\
I_{B} & :=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right] \\
I_{C} & :=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] .
\end{aligned}
$$

Proposition 7.12. Let $\bar{c}_{1}=\left\{g_{1}=0\right\}$ and $\bar{c}_{2}=\left\{g_{2}=0\right\}$ be splitting conics of Q_{u}. Consider the following conditions:
(i) $\left[\bar{c}_{1}\right]=\left[\bar{c}_{2}\right]$, that is, \bar{c}_{1} and \bar{c}_{2} belong to the same connected family.
(ii) The matrix $I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)$ is equal to I_{A}.
(iii) There exists a polynomial $q \in \Gamma(2)$ such that Q_{u} is defined by $g_{1} g_{2}+q^{2}=0$.

Then we have (iii) \Longrightarrow (ii) \Longleftrightarrow (i). If (i) holds and \bar{c}_{1} and \bar{c}_{2} are general in the connected family $\left[\bar{c}_{1}\right]=\left[\bar{c}_{2}\right] \in \bar{F}_{u}$ of splitting conics, then (iii) holds.

Proof. The implication (i) \Longrightarrow (ii) follows immediately from Table 2.1, and the implication (iii) \Longrightarrow (ii) follows from Lemma 7.3. Suppose that (ii) holds. Let $\pi_{u}^{*}\left(\bar{c}_{1}\right)=c_{1}+c_{1}^{\prime}$ and $\pi_{u}^{*}\left(\bar{c}_{2}\right)=c_{2}+c_{2}^{\prime}$ be the normal decompositions. Interchanging c_{2} and c_{2}^{\prime} if necessary, we can assume that $\left\langle c_{1}, c_{2}\right\rangle_{Y}=0$. We put $f_{1}:=\eta_{u}^{*}\left(c_{1}\right)$ and $f_{2}:=\eta_{u}^{*}\left(c_{2}\right)$. Note that f_{1} is a fiber of the elliptic fibration $\phi_{1} \in \operatorname{Ells}\left(X_{u}\right)$ corresponding to the class $\left[c_{1}\right] \in F_{u}$ of c_{1} by $F_{u} \cong \operatorname{Ells}\left(X_{u}\right)$. Since $\left\langle f_{1}, f_{2}\right\rangle_{X}=2\left\langle c_{1}, c_{2}\right\rangle_{Y}=0$, we conclude that f_{2} is a fiber of ϕ_{1}, that is, the elliptic fibration corresponding to $\left[c_{2}\right] \in F_{u} \cong \operatorname{Ells}\left(X_{u}\right)$ is equal to ϕ_{1}. Therefore \bar{c}_{1} and \bar{c}_{2} belong to the same connected family of splitting conics, and (i) holds. Thus (iii) \Longrightarrow (ii) \Longleftrightarrow (i) is proved.

Suppose that $\left[\bar{c}_{1}\right]=\left[\bar{c}_{2}\right]$. Let $\sigma: \overline{\mathcal{F}} \rightarrow \mathcal{U}$ be the finite étale covering defined by the family $\left\{\bar{F}_{u} \mid u \in \mathcal{U}\right\}$. By Proposition 7.9, we see that $\overline{\mathcal{F}}$ is irreducible. Let $p:=\left(g_{1}^{\prime}, g_{2}^{\prime}, q^{\prime}\right)$ be a point of $\mathcal{V}_{[2,2]}$, and we put $u^{\prime}:=\Psi_{[2,2]}(p) \in \mathcal{U}$;

$$
Q_{u^{\prime}}=\left\{g_{1}^{\prime} g_{2}^{\prime}+q^{\prime 2}=0\right\}
$$

Let \bar{c}_{i}^{\prime} be the splitting conic $\left\{g_{i}^{\prime}=0\right\}$ of $Q_{u^{\prime}}$ for $i=1,2$. By the implication (iii) \Longrightarrow (i), we have $\left[\bar{c}_{1}^{\prime}\right]=\left[\bar{c}_{2}^{\prime}\right]$ in $\bar{F}_{u^{\prime}}$. By $p \mapsto\left[\bar{c}_{1}^{\prime}\right]$, we obtain a morphism $\Psi_{\overline{\mathcal{F}}}: \mathcal{V}_{[2,2]} \rightarrow \overline{\mathcal{F}}$. By the same argument as in the proof of Proposition 7.7, we see that $\Psi_{\overline{\mathcal{F}}}$ is dominant. Since u is general in \mathcal{U}, the point $\left(u,\left[\bar{c}_{1}\right]\right)=\left(u,\left[\bar{c}_{2}\right]\right)$ is general in $\overline{\mathcal{F}}$ and the fiber W of $\Psi_{\overline{\mathcal{F}}}$ over $\left(u,\left[\bar{c}_{1}\right]\right)$ is of dimension

$$
\operatorname{dim} \Gamma(2,2: 2)-\operatorname{dim} \mathcal{U}=18-14=4
$$

Let $S:=\left\{\bar{c}(t) \mid t \in \mathbb{P}^{1}\right\}$ be the connected family of splitting conics containing \bar{c}_{1} and \bar{c}_{2}. If $\left(g_{1}^{\prime}, g_{2}^{\prime}, q^{\prime}\right)$ is a point of the fiber W, then we have two members $\bar{c}_{1}^{\prime}=\left\{g_{1}^{\prime}=0\right\}$ and $\bar{c}_{2}^{\prime}=\left\{g_{2}^{\prime}=0\right\}$ of S, and thus we have a morphism $W \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$, where \mathbb{P}^{1} is the base curve of the family S. If two points $\left(g_{1}^{\prime}, g_{2}^{\prime}, q^{\prime}\right)$ and $\left(g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, q^{\prime \prime}\right)$ of W are mapped to the same point of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then there exist scalars $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{\times}$such that $g_{1}^{\prime \prime}=\lambda_{1} g_{1}^{\prime}$ and $g_{2}^{\prime \prime}=\lambda_{2} g_{2}^{\prime}$. By the dimension reason, we see that $W \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is dominant. Hence, if $\bar{c}_{1}=\left\{g_{1}=0\right\}$ and $\bar{c}_{2}=\left\{g_{2}=0\right\}$ are general
members of the family S, there exists a polynomial $q \in \Gamma(2)$ such that $\left(g_{1}, g_{2}, q\right) \in W$, that is, Q_{u} is defined by $g_{1} g_{2}+q^{2}=0$.

The following two propositions are confirmed by direct computation.
Proposition 7.13. Among the 1953 non-ordered pairs $\left\{\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right\}$ of distinct elements $\left[\bar{c}_{1}\right]$, $\left[\bar{c}_{2}\right]$ of \bar{F}_{u}, exactly 945 pairs satisfy $I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)=I_{B}$; the remaining 1008 pairs satisfy $I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)=I_{C}$. When $u=b$, these two sets of pairs are the orbits of the monodromy action of $\pi_{1}(\mathcal{U}, b)$ on the set of non-ordered pairs of elements of \bar{F}_{b}.

Recall that each connected family $[c] \in F_{u}$ of Y-lifts of splitting conics contains exactly 6 reducible members, and the irreducible components l, l^{\prime} of a reducible member satisfy $\left\langle l, l^{\prime}\right\rangle_{Y}=1$. We have a surjective map

$$
\left\{\left\{l, l^{\prime}\right\} \mid l, l^{\prime} \in L_{u},\left\langle l, l^{\prime}\right\rangle_{Y}=1\right\} \rightarrow F_{u}
$$

defined by $\left\{l, l^{\prime}\right\} \mapsto[l]+\left[l^{\prime}\right]$. Each fiber of size 6 . The following gives how the cases

$$
I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)=I_{B} \quad \text { and } \quad I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)=I_{C}
$$

are distinguished.
Proposition 7.14. Let $\left[c_{1}\right]$ and $\left[c_{2}\right]$ be elements of F_{u}, and let $\left[\bar{c}_{1}\right]$ and $\left[\bar{c}_{2}\right]$ be their images by $F_{u} \rightarrow \bar{F}_{u}$. Then $I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)=I_{B}$ holds if and only if there exists a triangle $\left\{l_{1}, l_{2}, l_{3}\right\}$ on Y_{u} such that $\left[c_{1}\right]=\left[l_{1}\right]+\left[l_{3}\right]$ and $\left[c_{2}\right]=\left[l_{2}\right]+\left[l_{3}\right]$.
7.4. Pairs of a bitangent and a splitting conic. Let \bar{l} be a bitangent of Q_{u} with $\pi_{u}^{*}(\bar{l})=l+l^{\prime}$, and let \bar{c} be a splitting conic of Q_{u} with the normal decomposition $\pi_{u}^{*}(\bar{c})=c+c^{\prime}$. We put

$$
J(\bar{l},[\bar{c}]):=\left[\begin{array}{cc}
\langle l, c\rangle_{Y} & \left\langle l, c^{\prime}\right\rangle_{Y} \\
\left\langle l^{\prime}, c\right\rangle_{Y} & \left\langle l^{\prime}, c^{\prime}\right\rangle_{Y}
\end{array}\right]
$$

The matrix $J(\bar{l},[\bar{c}])$ is one of the following:

$$
\begin{aligned}
J_{\alpha} & :=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
J_{\beta} & :=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

By direct computation, we confirm the following:
Proposition 7.15. Let \bar{l} be a bitangent of Q_{u}, and \bar{c} a splitting conic of Q_{u}. Then $J(\bar{l},[\bar{c}])$ is equal to J_{α} if and only if the connected family $[\bar{c}] \in \bar{F}_{u}$ of splitting conics has a singular member containing \bar{l} as an irreducible component.

When $u=b$, the monodromy action of $\pi_{1}(\mathcal{U}, b)$ acts on the set of pairs $(\bar{l},[\bar{c}]) \in \bar{L}_{b} \times \bar{F}_{b}$ with $J(\bar{l},[\bar{c}])=J_{\alpha}$ transitively, and the set of pairs $(\bar{l},[\bar{c}])$ with $J(\bar{l},[\bar{c}])=J_{\beta}$ also transitively.

8. Intersection graph

Definition 8.1. An intersection graph is a pentad $\left(V_{\bar{l}}, V_{\bar{c}}, T, E_{\bar{c} \bar{c}}, E_{\bar{l} \bar{c}}\right)$ such that

- $V_{\bar{l}}$ and $V_{\bar{c}}$ are finite sets,
- T is a subset of $S_{0}^{3}\left(V_{\bar{l}}\right)$,
- $E_{\bar{c} \bar{c}}$ is a map $S^{2}\left(V_{\bar{c}}\right) \rightarrow\{A, B, C\}$, and
- $E_{\bar{l} \bar{c}}$ is a map $V_{\bar{l}} \times V_{\bar{c}} \rightarrow\{\alpha, \beta\}$.

Two intersection graphs $\left(V_{\bar{l}}, V_{\bar{c}}, T, E_{\bar{c} \bar{c}}, E_{\overline{\bar{c}} \bar{c}}\right)$ and $\left(V_{\bar{l}}^{\prime}, V_{\bar{c}}^{\prime}, T^{\prime}, E_{\bar{c} \bar{c}}^{\prime}, E_{\bar{c} \bar{c}}^{\prime}\right)$ are isomorphic if there exists a pair of bijections $V_{\bar{l}} \cong V_{\bar{l}}^{\prime}$ and $V_{\bar{c}} \cong V_{\bar{c}}^{\prime}$ that induces $T \cong T^{\prime}, E_{\bar{c} \bar{c}} \cong E_{\bar{c} \bar{c}}^{\prime}$, and $E_{\bar{l} \bar{c}} \cong E_{\bar{l} \bar{c}}^{\prime}$.

i	$\left\|o_{i}\right\|$	$\|T\|$	a_{0}	a_{1}	a_{2}
1	2016	0	0	0	0
2	1008	0	0	0	0
3	30240	4	0	0	6
4	60480	6	0	6	9
5	22680	8	2	10	16
6	181440	8	2	14	12
7	5040	8	4	12	12
8	12096	10	0	30	15
9	60480	10	2	24	19
10	1260	12	6	30	30

TABLE 9.1. The orbit decomposition for $(m, n)=(6,0)$

Definition 8.2. For a $\mathcal{Q}^{(m, n)}$-curve Z as in (1.1), we define an intersection graph

$$
g(Z):=\left(V_{\bar{l}}, V_{\bar{c}}, T, E_{\bar{c} \bar{c}}, E_{\bar{l} \bar{c}}\right)
$$

by the following:

- $V_{\bar{l}}$ is $\left\{\bar{l}_{1}, \ldots, \bar{l}_{m}\right\}$ and $V_{\bar{c}}$ is $\left\{\bar{c}_{1}, \ldots, \bar{c}_{n}\right\}$,
- T is the set of liftable triangles $\left\{\bar{l}_{i}, \bar{l}_{j}, \bar{l}_{k}\right\} \subset\left\{\bar{l}_{1}, \ldots, \bar{l}_{m}\right\}$,
- $E_{\bar{c} \bar{c}}\left(\bar{c}_{i}, \bar{c}_{j}\right)$ is the type of the matrix $I\left(\left[\bar{c}_{i}\right],\left[\bar{c}_{j}\right]\right)$ defined in Section 7.3, and
- $E_{\bar{l} \bar{c}}\left(\bar{l}_{i}, \bar{c}_{j}\right)$ is the type of the matrix $J\left(\bar{l}_{i},\left[\bar{c}_{j}\right]\right)$ defined in Section 7.4.

Remark 8.3. By Proposition 7.12, the relation

$$
\bar{c}_{i} \sim \bar{c}_{j} \Longleftrightarrow E_{\bar{c} \bar{c}}\left(\bar{c}_{i}, \bar{c}_{j}\right)=A
$$

is an equivalence relation on $V_{\bar{c}}$, and the functions $E_{\bar{c} \bar{c}}$ and $E_{\bar{l} \bar{c}}$ are compatible with this equivalence relation.

Remark 8.4. When $n=0$, the intersection graph equal to the two-graph in [5].
It is obvious that, if ζ and ζ^{\prime} are in the same connected component of $\mathcal{Z}^{(m, n)}$, the intersection graphs $g\left(Z_{\zeta}\right)$ and $g\left(Z_{\zeta^{\prime}}\right)$ are isomorphic. The converse is not true in general, as examples in the next section show.

9. Examples

9.1. The case $(m, n)=(6,0)$. We have $\left|P_{b}^{(6,0)}\right|=376740$. The action of $W\left(E_{7}\right)$ decomposes $P_{b}^{(6,0)}$ into orbits as in Table 9.1. For each orbit $o_{i} \subset P_{b}^{(6,0)}$, we choose a point $\zeta \in o_{i}$ and indicate the following data of the intersection graph $g\left(Z_{\zeta}\right)$ of $Z_{\zeta}=Q_{u}+\bar{l}_{1}+\cdots+\bar{l}_{6}:|T|=k$ is the number of the liftable triangles t_{1}, \ldots, t_{k} in $\left\{\bar{l}_{1}, \ldots, \bar{l}_{6}\right\}$, and a_{ν} is the number of pairs $\left\{t_{i}, t_{j}\right\}$ of liftable triangles such that $\left|t_{i} \cap t_{j}\right|=\nu$. The orbit o_{1} and o_{2} cannot be distinguished by the two-graph $\left(V_{\bar{l}}, T\right)$, but they belong to different $W\left(E_{7}\right)$-orbits, and hence the corresponding $\mathcal{Q}^{(6,0)}$-curves are of different homeomorphism types.
9.2. The case $n=0$. We continue to consider the case where $n=0$. From the two-graph $g=\left(V_{\bar{l}}, T\right)$, we can construct a graph \tilde{g} whose set of vertices is T and whose edge connecting $t_{\mu}, t_{\nu} \in T$ has weight $\left|t_{\mu} \cap t_{\nu}\right|$. If the graphs \tilde{g} and \tilde{g}^{\prime} are not isomorphic as graphs with weighted edges, then the two-graphs g and g^{\prime} are not isomorphic. Using this method, we prove the following:

Proposition 9.1. Except for the two orbits o_{1} and o_{2} in the case $m=6$ described in Section 9.1, all $W\left(E_{7}\right)$-orbits of $P_{b}^{(m, 0)}$ are distinguished by their two-graphs.

i	edge labels	orbit sizes
1	$A A A$	63
2	$A B B$	1890
3	$A C C$	2016
4	$B B B$	$3780+315$
5	$B B C$	15120
6	$B C C$	15120
7	$C C C$	$5040+336$

Table 9.2. The orbit decomposition for $(m, n)=(0,3)$

i	$E_{\bar{L} \bar{c}}$	$E_{\bar{c} \bar{c}}$	orbit sizes
1	$[[\alpha, \alpha],[\alpha, \alpha]]$	A	$3780+378$
2	$[[\alpha, \alpha],[\alpha, \alpha]]$	B	$3780+1890$
3	$[[\alpha, \alpha],[\alpha, \alpha]]$	C	15120
4	$[[\alpha, \alpha],[\alpha, \beta]]$	B	60480
5	$[[\alpha, \alpha],[\alpha, \beta]]$	C	$60480+12096$
6	$[[\alpha, \alpha],[\beta, \beta]]$	A	12096
7	$[[\alpha, \alpha],[\beta, \beta]]$	B	30240
8	$[[\alpha, \alpha],[\beta, \beta]]$	C	60480
9	$[[\alpha, \beta],[\alpha, \beta]]$	B	$45360+7560$
10	$[[\alpha, \beta],[\alpha, \beta]]$	C	30240
11	$[[\alpha, \beta],[\beta, \alpha]]$	B	60480
12	$[[\alpha, \beta],[\beta, \alpha]]$	C	$30240+6048$
13	$[[\alpha, \beta],[\beta, \beta]]$	B	120960
14	$[[\alpha, \beta],[\beta, \beta]]$	C	120960
15	$[[\beta, \beta],[\beta, \beta]]$	A	7560
16	$[[\beta, \beta],[\beta, \beta]]$	B	$22680+3780$
17	$[[\beta, \beta],[\beta, \beta]]$	C	45360

Table 9.3. The orbit decomposition for $(m, n)=(2,2)$

Example 9.2. Let o_{1}^{\prime} and o_{2}^{\prime} be the orbits in $P_{b}^{(22,0)}$ containing 22-tuples obtained by taking the complement in \bar{L}_{b} of 6-tuples in the orbits $o_{1} \subset P_{b}^{(6,0)}$ and $o_{2} \subset P^{(6,0)}$ above, respectively. Let g_{1}^{\prime} and g_{2}^{\prime} be the two-graphs of o_{1}^{\prime} and o_{2}^{\prime}. We have $|T|=600$ for both g_{1}^{\prime} and g_{2}^{\prime}. The associated graphs \tilde{g}_{1}^{\prime} and \tilde{g}_{2}^{\prime} with weighted edges are not isomorphic. The graph \tilde{g}_{1}^{\prime} has exactly 8203640 triples $\left\{t_{\lambda}, t_{\mu}, t_{\nu}\right\}$ of liftable triangles with weight $\left|t_{\lambda} \cap t_{\mu}\right|=\left|t_{\mu} \cap t_{\nu}\right|=\left|t_{\nu} \cap t_{\lambda}\right|=0$, whereas the number of such triples in \tilde{g}_{2}^{\prime} is 8203760 .
9.3. The case $(m, n)=(0,3)$. By Remark 8.3, the three edges of the graph $\left(V_{\bar{c}}, E_{\bar{c} \bar{c}}\right)$ are labelled as in the second column of Table 9.2. The set $P_{b}^{(0,3)}$ of size 43680 is decomposed into nine $W\left(E_{7}\right)$-orbits with sizes given in the third column of Table 9.2.
9.4. The case $(m, n)=(2,2)$. There exist 17 intersection graphs indicated in Table 9.3, where $E_{\bar{c} \bar{c}}$ is shown by the type of $I\left(\left[\bar{c}_{1}\right],\left[\bar{c}_{2}\right]\right)$, and

$$
E_{\overline{\bar{c}} \bar{c}}:=\left[\left[J\left(\bar{l}_{1},\left[\bar{c}_{1}\right]\right), J\left(\bar{l}_{1},\left[\bar{c}_{2}\right]\right)\right],\left[J\left(\bar{l}_{2},\left[\bar{c}_{1}\right]\right), J\left(\bar{l}_{2},\left[\bar{c}_{2}\right]\right)\right]\right] .
$$

The set $P_{b}^{(2,2)}$ of size 762048 is decomposed into 23 orbits by the action of $W\left(E_{7}\right)$, and their sizes are given in the 4 th column of Table 9.3.

References

[1] Enrique Artal-Bartolo. Sur les couples de Zariski. J. Algebraic Geom., 3(2):223-247, 1994.
[2] Enrique Artal Bartolo, José Ignacio Cogolludo, and Hiro-o Tokunaga. Pencils and infinite dihedral covers of \mathbb{P}^{2}. Proc. Amer. Math. Soc., 136(1):21-29, 2008. DOI: 10.1090/s0002-9939-07-08965-4
[3] Enrique Artal Bartolo, José Ignacio Cogolludo, and Hiro-o Tokunaga. A survey on Zariski pairs. In Algebraic geometry in East Asia-Hanoi 2005, volume 50 of Adv. Stud. Pure Math., pages 1-100. Math. Soc. Japan, Tokyo, 2008. DOI: 10.2969/aspm/05010001
[4] Shinzo Bannai. A note on splitting curves of plane quartics and multi-sections of rational elliptic surfaces. Topology Appl., 202:428-439, 2016. DOI: 10.1016/j.topol.2016.02.005
[5] Shinzo Bannai and Momoko Ohno. Two-graphs and the embedded topology of smooth quartics and its bitangent lines. Canad. Math. Bull., 63(4):802-812, 2020. DOI: 10.4153/s0008439520000053
[6] Shinzo Bannai, Hiro-o Tokunaga, and Momoko Yamamoto. A note on the topology of arrangements for a smooth plane quartic and its bitangent lines. Hiroshima Math. J., 49(2):289-302, 2019. DOI: $10.32917 / \mathrm{hmj} / 1564106549$
[7] Igor V. Dolgachev. Classical algebraic geometry. A modern view. Cambridge University Press, Cambridge, 2012.
[8] Benoît Guerville-Ballé and Taketo Shirane. Non-homotopicity of the linking set of algebraic plane curves. J. Knot Theory Ramifications, 26(13):1750089, 13, 2017. DOI: 10.1142/s0218216517500894
[9] Joe Harris. Galois groups of enumerative problems. Duke Math. J., 46(4):685-724, 1979. DOI: 10.1215/s0012-7094-79-04635-0
[10] Shigeyuki Kondo. A complex hyperbolic structure for the moduli space of curves of genus three. J. Reine Angew. Math., 525:219-232, 2000. DOI: 10.1515/crll.2000.069
[11] Masato Kuwata. Twenty-eight double tangent lines of a plane quartic curve with an involution and the Mordell-Weil lattices. Comment. Math. Univ. St. Pauli, 54(1):17-32, 2005.
[12] Daniel Plaumann, Bernd Sturmfels, and Cynthia Vinzant. Quartic curves and their bitangents. J. Symbolic Comput., 46(6):712-733, 2011. DOI: 10.1016/j.jsc.2011.01.007
[13] Xavier Roulleau. An atlas of K3 surfaces with finite automorphism group, 2021. arXiv: 2003.08985
[14] Matthias Schütt and Tetsuji Shioda. Mordell-Weil lattices, volume 70 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Singapore, 2019.
[15] Ichiro Shimada. Equisingular families of plane curves with many connected components. Vietnam J. Math., 31(2):193-205, 2003.
[16] Ichiro Shimada. Lattice Zariski k-ples of plane sextic curves and Z-splitting curves for double plane sextics. Michigan Math. J., 59(3):621-665, 2010. DOI: $10.1307 / \mathrm{mmj} / 1291213959$
[17] Ichiro Shimada. On an Enriques surface associated with a quartic Hessian surface. Canad. J. Math., 71(1):213-246, 2019. Corrigendum: Canad. J. Math., 74(2): 603-605, 2022.
DOI: 10.4153/s0008414x20000838
[18] Taketo Shirane. A note on splitting numbers for Galois covers and π_{1}-equivalent Zariski k-plets. Proc. Amer. Math. Soc., 145(3):1009-1017, 2017. DOI: 10.1090/proc/13298
[19] Taketo Shirane. Galois covers of graphs and embedded topology of plane curves. Topology Appl., 257:122-143, 2019. DOI: 10.1016/j.topol.2019.03.002
[20] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.11 .0 (gap-system.org).
Ichiro Shimada, Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp

[^0]: 2020 Mathematics Subject Classification. 14H50, 14J26.
 This work was supported by JSPS KAKENHI Grant Number 20H01798 and 20K20879.

