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ZARISKI MULTIPLES ASSOCIATED WITH QUARTIC CURVES

ICHIRO SHIMADA

Abstract. We investigate reducible plane curves whose irreducible components are a general
smooth quartic curve, some of its bitangents, and some of its 4-tangent conics. We show that

the deformation types of plane curves of this type coincide with the homeomorphism types.

The number of deformation types grows as the 62nd power of the degree of the plane curves
when the degree tends to infinity. Thus we obtain Zariski multiples of large sizes.

1. Introduction

By a plane curve, we mean a reduced, possibly reducible, complex projective plane curve.
We say that two plane curves C and C ′ have the same combinatorial type if there exist tubular
neighbourhoods T (C) of C and T (C ′) of C ′ such that (T (C), C) and (T (C ′), C ′) are homeomor-
phic, whereas we say that C and C ′ have the same homeomorphism type if (P2, C) and (P2, C ′)
are homeomorphic.

A Zariski N -ple is a set of plane curves {C1, . . . , CN} such that the curves Ci have the same
combinatorial type, but their homeomorphism types are pairwise different. The notion of Zariski
N -ples was introduced by Artal-Bartolo [1] in reviving a classical example of 6-cuspidal curves
of degree 6 due to Zariski. Since then, this notion has been studied by many people from various
points of view. Some of the tools that have been used in this investigation are: Alexander
polynomials, characteristic varieties, fundamental groups of complements, topological invariants
of branched coverings, and so on. See the survey paper [3]. Recently, Bannai et al. [4, 5, 6] have
investigated Zariski N -ples such that each member is a union of a smooth quartic curve and
some of its bitangents.

In this paper, we introduce 4-tangent conics of a smooth quartic curve, and consider Zariski
N -ples Z1, . . . , ZN such that each Zi is a union of a smooth quartic curve, some of its bitangents,
and some of its 4-tangent conics.

Let Q be a smooth quartic curve. A bitangent of Q is a line whose intersection multiplicity
with Q is even at each intersection point. It is well known that every smooth quartic curve
has exactly 28 bitangents. We say that a bitangent l̄ of Q is ordinary if l̄ is tangent to Q at
distinct 2 points. A smooth conic c̄ ⊂ P2 is called a 4-tangent conic of Q if c̄ is tangent to Q
at 4 distinct points. Every smooth quartic curve has 63 one-dimensional connected families of
4-tangent conics (see Theorem 4.1).

Definition 1.1. Let m and n be non-negative integers such that m ≤ 28. We say that a plane
curve Z is a Q(m,n)-curve if Z is of the form

(1.1) Z = Q+ l̄1 + · · ·+ l̄m + c̄1 + · · ·+ c̄n,

where Q is a smooth quartic curve, l̄1, . . . , l̄m are distinct bitangents of Q, and c̄1, . . . , c̄n are
distinct 4-tangent conics of Q, and they satisfy that

(i) the bitangents l̄1, . . . , l̄m are ordinary,
(ii) the intersection of any three of Q, l̄1, . . . , l̄m, c̄1, . . . , c̄n is empty, and
(iii) the intersection of any two of l̄1, . . . , l̄m, c̄1, . . . , c̄n is transverse.
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N 1 1 2 3 5 10 16 23 37 54 70 90 101 103
G 1 1 2 3 5 9 16 23 37 54 70 90 101 103

Table 1.1. N (m,0) = N (28−m,0)

n 1 2 3 4 5 6 7 8 9 10

N 1 3 9 30 112 501 2483 13791 81404 490750
G 1 3 7 22 71 306 1585 9831 64790 425252

Table 1.2. N (0,n)

(m,n) (1, 1) (1, 2) (2, 1) (1, 3) (2, 2) (3, 1) (1, 4) (2, 3) (3, 2) (4, 1)

N 2 8 4 33 23 9 162 132 66 20
G 2 8 3 30 17 8 140 95 57 17

(m,n) (1, 5) (2, 4) (3, 3) (4, 2) (5, 1) (1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1)

N 901 889 508 190 45 5674 6503 4348 1854 531 103
G 753 670 430 164 42 4829 5259 3812 1649 501 96

Table 1.3. N (m,n)

It is obvious that any two Q(m,n)-curves have the same combinatorial type. We construct a
non-singular variety Z(m,n) parameterizing all Q(m,n)-curves in Section 5.

Definition 1.2. We say that two Q(m,n)-curves have the same deformation type if they belong
to the same connected component of the parameter space Z(m,n).

It is obvious that Q(m,n)-curves of the same deformation type have the same homeomorphism
type. Our main results are the following:

Theorem 1.3. If two Q(m,n)-curves have the same homeomorphism type, then they have the
same deformation type.

We put

(1.2) d(m,n) :=

(
28

m

)
·
(
n+ 62

62

)
,

which grows as O(n62) when n→ ∞.

Theorem 1.4. The number N (m,n) of deformation types of Q(m,n)-curves satisfies

(1.3) d(m,n)/1451520 ≤ N (m,n) ≤ d(m,n).

The main ingredient of the proof of these results is the monodromy argument of Harris [9]
(see Theorem 3.1). This argument converts the problem of enumerating deformation types of
Q(m,n)-curves to an easy combinatorial problem of counting orbits of an action of the Weyl group
W (E7) on a certain finite set. In Tables 1.1, 1.2, 1.3, we give a list of N (m,n) for some (m,n).
See Section 5.2 for more detail.

To each Q(m,n)-curve Z, we associate a discrete invariant g(Z), which we call an intersection
graph. This invariant is similar to the splitting graph defined in [19]. Note that each of the
bitangents l̄1, . . . , l̄m and a 4-tangent conics c̄1, . . . , c̄n of the smooth quartic curve Q ⊂ Z splits
by the double covering Y → P2 branched along Q. This data g(Z) describes how the irreducible
components of these pull-backs intersect on Y . See Section 8 for the precise definition. In Tables,
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we also present the numberG of non-isomorphic intersection graphs obtained fromQ(m,n)-curves.
When n = 0, the intersection graph g(Z) is the two-graph studied in [5], in which Bannai and
Ohno studied Q(m,0)-curves for m ≤ 6, and enumerated their homeomorphism types that can
be distinguished by the two-graphs. See Sections 9.1 and 9.2 for the details.

The 4-tangent conics of a smooth quartic curve Q are related to the 2-torsion points of the
Jacobian of Q (see Remark 4.3). A similar idea applied to plane cubic curves enabled us to
construct in [15] certain equisingular families of plane curves with many connected components.
In [15], it was also shown that these connected components cannot be distinguished by the
fundamental groups of the complements, because they are all abelian. Then it was shown in [8]
and [18] that the homeomorphism types of distinct connected components of these families can
be distinguished by the invariant called linking numbers.

The embedding topology of reducible plane curves whose irreducible components are tangent
to each other was also investigated by Artal Bartolo, Cogolludo, and Tokunaga in [2] from
the view point of dihedral covering of the plane branched along the curve. In this case, the
complement can have a non-abelian fundamental group. See [2, Corollary 1].

It would be an interesting problem to study the fundamental groups of the complements of
Q(m,n)-curves, and their related invariants such as linking numbers and/or (non-)existence of
finite coverings of the plane with prescribed Galois groups.

Via the cyclic covering of the plane of degree 4 branched along a smooth quartic curve, the
geometry of Q(m,n)-curves is related to the geometry of K3 surfaces. By considering the double
covering branched along a singular sextic curve and employing Torelli theorem for complex K3
surfaces, we have investigated in [16] Zariski N -ples of plane curves of degree 6 with only simple
singularities. We expect that a similar idea can be applied to Zariski N -ples associated with
singular quartic curves.

This paper is organized as follows. In Section 2, we introduce cyclic coverings Xu → Yu → P2

branched over a smooth quartic curve Qu, and fix some notation. In Section 3, we recall the
result of Harris [9]. In Section 4, we construct the family of 4-tangent conics. In Section 5, we
construct the space Z(m,n) parameterizing all Q(m,n)-curves, and prove Theorems 1.3 and 1.4.
In Section 6, we further study the family of 4-tangent conics in detail. The geometry of the
K3 surface Xu is closely investigated. In Section 7, we study the configurations of lifts in Yu
of bitangents and 4-tangent conics, and we define the intersection graph g(Z) in Section 8. In
Section 9, we examine some examples for small m and n.

Acknowledgement. Thanks are due to Professor Shinzo Bannai and Professor Taketo Shi-
rane for discussions and comments. The author also thanks the anonymous referee for his/her
valuable comments on the first version of this paper.

2. Coverings of P2

For a positive integer d, we put

Γ(d) := H0(P2,O(d)).

Let U denote the space of smooth quartic curves, which is a Zariski open subset of P∗(Γ(4)).
Let u be a point of U . We denote by Qu ⊂ P2 the smooth quartic curve corresponding to the
point u. We consider the following branched coverings:

γu : Xu
ηu−→ Yu

πu−→ P2,

where πu is the double covering of P2 branched along Qu, ηu is the double covering of Yu branched
along π−1

u (Qu), and γu = πu ◦ ηu is the cyclic covering of degree 4 of P2 branched along Qu. We
put

SYu := H2(Yu,Z),
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P2 Yu Xu

l̄ π∗
u(l̄) = l + l′ γ∗

u(l̄) = l̃ + l̃′

⟨l, l⟩Y = ⟨l′, l′⟩Y = −1 ⟨l̃, l̃⟩X = ⟨l̃′, l̃′⟩X = −2

⟨l, l′⟩Y = 2 ⟨l̃, l̃′⟩X = 4

⟨hu, l⟩Y = ⟨hu, l
′⟩Y = 1 ⟨h̃u, l̃⟩X = ⟨h̃u, l̃

′⟩X = 2

c̄ π∗
u(c̄) = c+ c′ γ∗

u(c̄) = c̃+ c̃′

⟨c, c⟩Y = ⟨c′, c′⟩Y = 0 ⟨c̃, c̃⟩X = ⟨c̃′, c̃′⟩X = 0

⟨c, c′⟩Y = 4 ⟨c̃, c̃′⟩X = 8

⟨hu, c⟩Y = ⟨hu, c
′⟩Y = 2 ⟨h̃u, c̃⟩X = ⟨h̃u, c̃

′⟩X = 4

Table 2.1. Pull-backs of bitangents and 4-tangent conics

which is a unimodular lattice of rank 8 with the cup-product ⟨ , ⟩Y . Let hu ∈ SYu be the class
of the pull-back of a line on P2 by πu. It is well known that Yu is a del Pezzo surface of degree
2 with the anti-canonical class hu. (See [7, Chapters 6 and 8] about del Pezzo surfaces.) On the
other hand, the surface Xu is a K3 surface. Let ⟨ , ⟩X denote the cup product of H2(Xu,Z),
and let h̃u be the class η∗u(hu). Then h̃u is an ample class of degree ⟨h̃u, h̃u⟩X = 4.

It is classically known that every smooth quartic curve Qu has exactly 28 bitangents. More-
over, if u is general in U , all bitangents l̄ of Qu are ordinary, that is, l̄ is tangent to Qu at two
distinct points.

Definition 2.1. A reduced conic c̄ ⊂ P2 is called a splitting conic of Qu if the intersection
multiplicity of Qu and c̄ is even at each intersection point.

A smooth conic c̄ is splitting if and only if π∗
u(c̄) ⊂ Yu has two irreducible components. A

singular reduced conic c̄ is splitting if and only if c̄ is a union of two distinct bitangents.
It is easy to see that a smooth conic c̄ = {g = 0} defined by g ∈ Γ(2) is a splitting conic of

Qu = {φ = 0} defined by φ ∈ Γ(4) if and only if there exist polynomials f ∈ Γ(2) and q ∈ Γ(2)
such that φ = fg + q2. By an easy dimension counting, we see the following:

Lemma 2.2. Suppose that u is general in U . Let c̄ ⊂ P2 be a smooth splitting conic of Qu.
Then the intersection multiplicities of Qu and c̄ are either (2, 2, 2, 2) or (4, 2, 2). □

Definition 2.3. A smooth splitting conic c̄ ⊂ P2 of Qu is called a 4-tangent conic (resp. a
3-tangent conic) of Qu if the intersection multiplicities of Qu and c̄ are (2, 2, 2, 2) (resp. (4, 2, 2)).

The following is easy to verify. The results are summarized in Table 2.1.

Proposition 2.4. (1) Let l̄ be an ordinary bitangent of Qu. Then π
∗
u(l̄) is a union of two smooth

rational curves l and l′ on Yu with self-intersection −1 that intersect at two points transversely,
and γ∗u(l̄) is a union of two smooth rational curves l̃ and l̃′ on Xu with self-intersection −2 that
intersect at two points with intersection multiplicities (2, 2).

(2) Let c̄ be a 4-tangent conic of Qu. Then π∗
u(c̄) is a union of two smooth rational curves

c and c′ on Yu with self-intersection 0 that intersect at four points transversely, and γ∗u(c̄) is a
union of two smooth elliptic curves c̃ and c̃′ on Xu with self-intersection 0 that intersect at four
points with intersection multiplicities (2, 2, 2, 2). □

Definition 2.5. A curve l on Yu is called a Y -lift of a bitangent l̄ of Qu if πu maps l to l̄
isomorphically. We also say that a curve c on Yu is a Y -lift of a splitting conic c̄ of Qu if πu
maps c to c̄ isomorphically.
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3. Monodromy

Let u be a point of U . It is well known that the lattice SYu = H2(Yu,Z) is isomorphic to the
lattice of rank 8 whose Gram matrix is the diagonal matrix diag(1,−1, . . . ,−1), and that the
orthogonal complement

Σu := (Zhu ↪→ SYu)
⊥

of the ample class hu in SYu is isomorphic to the negative-definite root lattice of type E7. The
deck transformation

ιu : Yu → Yu

of πu : Yu → P2 acts on Σu as −1. Note that the group O(Σu) of isometries of Σu is equal to the
Weyl group W (E7), which is of order 2903040. Hence there exists an injective homomorphism

(3.1) O(SYu, hu) := { g ∈ O(SYu) |hgu = hu } ↪→ W (E7).

It is easy to check that the action on Σu of each of the standard generators of W (E7) lifts to an
isometry of SYu that fixes hu. Hence the homomorphism (3.1) is in fact an isomorphism. The
family of lattices {SYu |u ∈ U } forms a locally constant system

SY → U .
Let b be a general point of U , which will serve as a base point of U . The monodromy action of
π1(U , b) on the lattice SYb preserves hb ∈ SYb.

Theorem 3.1 (Harris [9]). The monodromy homomorphism

(3.2) π1(U , b) → O(SYb, hb) ∼=W (E7)

is surjective.

The original statement in [9] is not on the monodromy action on the lattice SYb, but on the
Galois group W (E7)/{±1} ∼= GO6(F2) of bitangents of Qb. Moreover the proof in [9] is via the
proof of a similar result on cubic surfaces with E7 replaced by E6. Hence we give a direct and
simple proof of Theorem 3.1 below.

For the proof, we prepare some more notation, which will be used throughout this paper. We
denote by Lu the set of bitangents of Qu, and Lu the set of Y -lifts of bitangents of Qu. Let
Σ∨

u denote the dual lattice of Σu. By identifying l ∈ Lu with its class [l] ∈ SYu, we have an
identification

Lu = { v ∈ SYu | ⟨v, hu⟩Y = 1, ⟨v, v⟩Y = −1 }(3.3)
∼= { v ∈ Σ∨

u | ⟨v, v⟩Y = −3/2 },
where the second bijection is obtained by the orthogonal projection SYu → Σ∨

u . We put
SY u := SYu/⟨ιu⟩, and consider the commutative diagram

Lu ↪→ SYu

↓ ↓
Lu ↪→ SY u,

(3.4)

where vertical arrows are quotient maps by the involution ιu. Since the action of π1(U , b) on SYb
commutes with ιb, we have a monodromy action of π1(U , b) on SY b. Thus we obtain a diagram

L ↪→ SY
↓ ↓
L ↪→ SY

(3.5)

of locally constant systems over U parameterizing the diagram (3.4) over U , where vertical arrows
are quotient maps by the family of involutions

ιU := { ιu |u ∈ U }.
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Note that L is the space parameterizing all bitangents of smooth quartic curves.

Proof of Theorem 3.1. Let L
{7}
u (resp. L

[7]
u ) be the set of non-ordered 7-tuples {l1, . . . , l7} (resp. or-

dered 7-tuples [l1, . . . , l7]) of elements l1, . . . , l7 ∈ Lu such that ⟨li, lj⟩Y = 0 for i ̸= j. By (3.3),

we can enumerate all elements of L
{7}
u . It turns out that |L{7}

u | = 576, and hence

(3.6) |L[7]
u | = 576 · 7! = 2903040 = |W (E7)|.

(See also Remark 6.6.) For 7-tuples λ = [l1, . . . , l7] and λ′ = [l′1, . . . , l
′
7] in L

[7]
u , there exists a

unique isometry gλ,λ′ ∈ O(SYu ⊗Q) such that

gλ,λ′(hu) = hu, gλ,λ′(li) = l′i (i = 1, . . . , 7).

It is enough show that, when u = b, these elements gλ,λ′ are contained in the image of the
monodromy (3.2). Indeed, by (3.6), this claim implies that these isometries gλ,λ′ constitute the
whole group O(SYb, hb) ∼= W (E7). To prove this claim, it is enough to show that π1(U , b) acts
on L

[7]
b transitively by the monodromy, or equivalently, to show that the total space L[7] of the

locally constant system

L[7] → U
obtained from the family {L[7]

u |u ∈ U } is connected.
Let λ = [l1, . . . , l7] be a point of L[7] over u ∈ U . Contracting the (−1)-curves l1, . . . , l7, we

obtain a birational morphism

blλ : Yu → Pλ

to a projective plane Pλ. We put βλ := [blλ(l1), . . . ,blλ(l7)]. Conversely, we fix a projective
plane P, and let P[7] denote the set of ordered 7-tuples [p1, . . . , p7] of distinct points of P. For
a general point β = [p1, . . . , p7] of P

[7], let

blβ : Y β → P

be the blowing-up at the points p1, . . . , p7. Then Y
β is a del Pezzo surface of degree 2, and the

complete linear system of the anti-canonical divisor on Y β gives a double covering Y β → P2

branched along a smooth quartic curve Qβ such that each of the 7 exceptional curves over
p1, . . . , p7 is a Y -lift of a bitangent of Qβ . Hence there exist a point λ ∈ L[7] and an isomorphism
Pλ

∼= P that maps βλ to β.
We put

I :=

{
(λ, γ, β)

∣∣∣∣ λ ∈ L[7], β ∈ P[7], and γ is an isomorphism
Pλ

∼= P that maps βλ to β

}
.

Then the projection I → L[7] is surjective with fibers isomorphic to PGL3(C), whereas the
projection I → P[7] is dominant with fibers isomorphic to PGL3(C). Since P[7] and PGL3(C)
are connected, we see that L[7] is connected. □

4. Family of 4-tangent conics

In this section, we construct a space C parameterizing all 4-tangent conics of smooth quartic
curves.

Let Cu denote the set of 4-tangent conics of Qu, and let Cu be the set of Y -lifts of 4-tangent
conics of Qu. We put

(4.1) Fu := { v ∈ SYu | ⟨v, hu⟩Y = 2, ⟨v, v⟩Y = 0 } ∼= { v ∈ Σu | ⟨v, v⟩Y = −2 },
where the second bijection is given by the orthogonal projection SYu → Σ∨

u . As was shown in
Table 2.1, we have [c] ∈ Fu for any c ∈ Cu. Note that |Fu| = 126, the number of roots of the
root lattice Σu of type E7. We put

Fu := Fu/⟨ιu⟩ ⊂ SY u.
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Then we have a commutative diagram

(4.2)

Cu
Φu−→ Fu ↪→ SYu

↓ ↓ ↓
Cu

Φu−→ Fu ↪→ SY u

where Φu : Cu → Fu is given by c 7→ [c] ∈ SYu, and the vertical arrows are quotient by the
involution ιu : Yu → Yu. We have locally constant systems F → U and F → U obtained from
the families {Fu |u ∈ U } and {Fu |u ∈ U }.

Theorem 4.1. There exists a commutative diagram

(4.3)

C ΦU−→ F ↪→ SY
↓ ↓ ↓
C ΦU−→ F ↪→ SY

of morphisms over U that parameterizes the diagrams (4.2) over U . The morphisms ΦU : C → F
and ΦU : C → F are smooth and surjective, and every fiber of them is a Zariski open subset of
P1.

For the proof, we use the double covering ηu : Xu → Yu of Yu by the K3 surface Xu. We
consider the Néron-Severi lattice

SXu := H2(Xu,Z) ∩H1,1(Xu)

with the intersection form ⟨ , ⟩X . Then ηu induces a embedding of the lattice

η∗u : SYu(2) ↪→ SXu,

where SYu(2) is the lattice obtained from SYu by multiplying the intersection form by 2. Let
ju : Xu → Xu be a generator of the cyclic group Gal(Xu/P2) of order 4. Then ηu : Xu → Yu is
the quotient morphism by j2u. Hence j2u acts on the image of η∗u : SYu(2) ↪→ SXu trivially.

Proof of Theorem 4.1. Note that the family of involutions ιU = { ιu |u ∈ U } acts on F over
U without fixed points. Hence, if the parameterizing space ΦU : C → F of Φu : Cu → Fu is
constructed, then ΦU : C → F is constructed as a quotient of ΦU : C → F by ιU .

Let u be an arbitrary point of U , and let v be an element of Fu ⊂ SYu. We put

ṽ := η∗u(v) ∈ SXu.

We can easily confirm that there exist exactly 6 pairs {li, l′i} (i = 1, . . . , 6) of Y -lifts of bitangents
of Qu such that ⟨li, l′i⟩Y = 1 and v = [li]+[l′i], and that these 12 curves l1, l

′
1, . . . , l6, l

′
6 are distinct.

Hence the complete linear system on the K3 surface Xu corresponding to ṽ ∈ SXu has no fixed
components. The class ṽ is primitive in SXu with ⟨ṽ, ṽ⟩X = 0 and ⟨h̃u, ṽ⟩X = 4. Therefore there
exists an elliptic fibration on Xu such that the class of a fiber is equal to ṽ. We denote this
elliptic fibration by ϕv : Xu → P1 .

If c ∈ Cu, then η∗u(c) is an elliptic curve, and hence η∗u(c) is a smooth fiber of an elliptic
fibration of ϕv : Xu → P1, where v = [c]. Conversely, suppose that (u, v) ∈ F , and let f be a
smooth fiber of the elliptic fibration ϕv : Xu → P1. We denote by a ⊂ P2 the plane curve γu(f)
with the reduced structure. Let d be the degree of a, and δ the mapping degree of γu|f : f → a.

Since ⟨h̃u, f⟩X = 4 and γu : Xu → P2 is Galois, we have (d, δ) = (1, 4), (2, 2), or (4, 1). If
(d, δ) = (1, 4), then f = γ−1

u (a) is invariant under the action of Gal(Xu/P2) = ⟨ju⟩, and hence

the class [f ] ∈ SXu is a non-zero multiple of h̃u, which contradicts ⟨f, f⟩X = 0. If (d, δ) = (4, 1),
then f , ju(f), j

2
u(f), j

3
u(f) are distinct curves that intersect over the points of a ∩Qu. On the

other hand, since [f ] = η∗u(v) ∈ Im η∗u, we have j∗2u ([f ]) = [f ]. This contradicts ⟨f, f⟩X = 0.
Hence (d, δ) = (2, 2), and we see that a is a smooth splitting conic. Note that a is 4-tangent,
because otherwise f would be singular. Thus we have proved that c 7→ η∗u(c) gives a bijection
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from Cu to the union of the sets of smooth fibers of elliptic fibrations ϕv : Xu → P1, where v
runs through Fu.

Let X → U be the universal family of {Xu |u ∈ U }, and let πF : F×UX → F be the pull-back
of X → U by F → U . Let M be a line bundle on F ×U X such that the class [M|Xu] ∈ SXu

of the line bundle M|Xu on π−1
F (u, v) = Xu is equal to v ∈ Fu. Then πF∗M → F is a vector

bundle of rank 2. The fiber over (u, v) ∈ F of the P1-bundle P∗(πF∗M) → F is identified with
the base curve of the elliptic fibration ϕv : Xu → P1. We can construct C as the open subset of
P∗(πF∗M) consisting of non-critical points of ϕv : Xu → P1. □

The non-singular varieties C and C parameterize all pairs (u, c) and (u, c̄), respectively, where
u ∈ U and c ∈ Cu, c̄ ∈ Cu. Since Φu and Φu have connected fibers, we can regard Fu as the set
of connected families of Y -lifts of 4-tangent conics of Qu, and Fu as the set of connected families
of 4-tangent conics. The following observation obtained in the proof of Theorem 4.1 will be used
in the next section.

Proposition 4.2. Every connected family [c] ∈ Fu of Y -lifts of splitting conics is a pencil with
no base points. □

Remark 4.3. A line section Λu of Qu ⊂ P2 is a canonical class of the genus 3 curve Qu. Let
Pic0(Qu) be the Picard group of line bundles of degree 0 of Qu, and let Pic0(Qu)[2] be the
subgroup of 2-torsion points of Pic0(Qu). For a 4-tangent conic c̄ of Qu, let Θu(c̄) be the
reduced part of the divisor c̄∩Qu of Qu. Then the class of the divisor Θu(c̄)−Λu of degree 0 is
a point of Pic0(Qu)[2]− {0}, and this correspondence gives a bijection Fu

∼= Pic0(Qu)[2]− {0}.

5. Proof of the main results

In this section, we construct the space Z(m,n) parameterizing all Q(m,n)-curves, and prove
Theorems 1.3 and 1.4.

5.1. Deformation types. We fix some notation. For a set A, let Sk(A) denote the symmetric
product Ak/Sk, where A

k = A × · · · × A (k times), and let Sk
0 (A) denote the complement in

Sk(A) of the image of the big diagonal in Ak.
For a morphism A → U , let Sk(A) denote the symmetric product Ak/Sk, where

Ak := A×U · · · ×U A (k times),

and let Sk
0 (A) denote the complement in Sk(A) of the image of the big diagonal in Ak. Note

that, if A is smooth over U with relative dimension 1, then Sk(A) is smooth over U with relative
dimension k.

Recall that L → U and C → U are the spaces parameterizing all bitangents and all 4-tangent
conics of smooth quartic curves, respectively. We put

Z ′(m,n) := Sm
0 (L)×U Sn

0 (C),

which is the space parameterizing all curves Z ′, where Z ′ is a union of a smooth quartic curve
Q, m distinct bitangents of Q, and n distinct 4-tangent conics of Q. Now we can construct the
parameter space

ϖ : Z(m,n) → U
of Q(m,n)-curves as the open subvariety of Z ′(m,n) consisting of points corresponding to plane
curves Z ′ satisfying conditions (i), (ii), (iii) in Definition 1.1. For a point ζ ∈ Z(m,n), we denote
by Zζ the Q(m,n)-curve corresponding to ζ.

For u ∈ U , we put

P (m,n)
u := Sm

0 (Lu)× Sn(Fu) ⊂ Sm
0 (SY u)× Sn(SY u).
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The size of P
(m,n)
u is equal to d(m,n) defined by (1.2). Then we obtain a finite étale covering

ρ : P(m,n) := Sm
0 (L)×U Sn(F) → U

of degree d(m,n) parameterizing the family

{P (m,n)
u |u ∈ U }.

Using ΦU : C → F in Theorem 4.1, we have a morphism θ′ : Z ′(m,n) → P(m,n). Restricting θ′ to
the open subvariety Z(m,n) ⊂ Z ′(m,n), we obtain a morphism

θ : Z(m,n) → P(m,n),

which maps ζ ∈ Z(m,n) to

(5.1) θ(ζ) := ({l̄1, . . . , l̄m}, [[c̄1], . . . , [c̄n]]) ∈ P
(m,n)
ϖ(ζ) ,

where Zζ has the irreducible components as in (1.1). Thus we obtain the following commutative
diagram.

Z(m,n)
θ−→ P(m,n)

ϖ ↘ ↙ ρ

U
To investigate the image of θ, we put

U ′ :=

{
u ∈ U

∣∣∣∣ every bitangent of Qu is ordinary, and their union
has only ordinary nodes as its singularities

}
,

which is a Zariski open dense subset of U .

Lemma 5.1. The morphism θ : Z(m,n) → P(m,n) is smooth with each non-empty fiber being
an irreducible variety of dimension n. The image of θ contains ρ−1(U ′). In particular, the
morphism θ is dominant.

Proof. Since ΦU : C → F is smooth and surjective with each fiber being a Zariski open subset
of P1, the morphism θ′ : Z ′(m,n) → P(m,n) is smooth and surjective with each fiber being an
irreducible variety of dimension n. Suppose that u ∈ U ′, and let p := ({l̄1, . . . , l̄m}, [[c̄1], . . . , [c̄n]])
be a point of P

(m,n)
u . By Proposition 4.2 and Bertini’s theorem, if we choose each 4-tangent conic

c̄′j in the connected family [c̄j ] ∈ Fu generally, the curve Qu +
∑
l̄i +

∑
c̄′j satisfies conditions

(ii) and (iii) in Definition 1.1. Hence θ−1(p) = θ′−1(p) ∩ Z(m,n) is non-empty. □

Proof of Theorem 1.4. By Lemma 5.1, the connected components of Z(m,n) are in bijective cor-
respondence with the connected components of P(m,n), and hence with the π1(U , b)-orbits in

P
(m,n)
b . By Theorem 3.1, the number N (m,n) of π1(U , b)-orbits in P (m,n)

b satisfies (1.3), because
|W (E7)/{±1}| = 1451520. □

5.2. Computation of N (m,n). Recall that Σb is a negative-definite root lattice of type E7. Let
Σ be the negative-definite root lattice of type E7 with the standard basis, and let Σ∨ be its dual.
According to (3.3) and (4.1), we define the subsets

L := { v ∈ Σ∨ | ⟨v, v⟩ = −3/2 }/{±1}

of Σ
∨
:= Σ∨/{±1}, and

F := { v ∈ Σ | ⟨v, v⟩ = −2 }/{±1}
of Σ := Σ/{±1}. We then put

P (m,n) := Sm
0 (L)× Sn(F ).

The group W (E7) is generated by seven standard reflections. The permutations on L and on F
induced by these generators are easily calculated. Hence the permutations on P (m,n) induced
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by these generators are also calculated. Thus we can compute the orbit decomposition of P (m,n)

by W (E7), and obtain the number N (m,n) of deformation types of Q(m,n)-curves.

Example 5.2. The size d(4,0) of P (4,0) is 20475. The group W (E7) decomposes this set into
three orbits of sizes 315, 5040, 15120. Hence N (4,0) = 3.

Example 5.3. The size d(0,4) of P (0,4) is 720720. The group W (E7) decomposes this set into
30 orbits as follows:

720720 = 63 + 945× 3 + 1008× 2 + 1890 + 2016 + 3780× 2 + 5040× 2 + 10080 +

11340 + 15120× 5 + 22680 + 30240× 5 + 45360× 2 + 90720 + 120960× 2.

Hence N (0,4) = 30.

Example 5.4. The size d(2,2) of P (2,2) is 762048. The group W (E7) decomposes this set into
23 orbits as follows:

762048 = 378 + 1890 + 3780× 3 + 6048 + 7560× 2 + 12096× 2 + 15120 + 22680 +

30240× 3 + 45360× 2 + 60480× 4 + 120960× 2.

Hence N (2,2) = 23.

Remark 5.5. For the computation, we used GAP [20], which is good at computations of permu-
tation groups.

5.3. Real quartic curves.

Definition 5.6. Note that H2(P2,Z) ∼= Z has a canonical generator, that is, the class of a
line. Let C and C ′ be plane curves with the same homeomorphism type. A homeomorphism
σ : (P2, C) ∼−→ (P2, C ′) is said to be orientation-preserving (resp. orientation-reversing) if the
action of σ on H2(P2,Z) is the identity (resp. the multiplication by −1).

Example 5.7. Suppose that Q(m,n)-curves Zζ and Zζ′ are of the same deformation type. Let

α : I → Z(m,n) be a path from ζ to ζ ′, where I := [0, 1] ⊂ R. By the parallel transport along
α, we obtain a homeomorphism α∗ : (P2, Zζ)

∼−→ (P2, Zζ′). It is obvious that α∗ is orientation-
preserving.

Proposition 5.8. Every Q(m,n)-curve Zζ admits an orientation-reversing self-homeomorphism
(P2, Zζ)

∼−→ (P2, Zζ).

For the proof of Proposition 5.8, we use a classical result on real quartic curves. We give a
structure of the R-scheme to P2. We denote by ΓR(d) the space of homogeneous polynomials of
degree d on P2 with real coefficients, and consider the real projective space P∗(ΓR(4)) as a closed
subset of P∗(Γ(4)). We then put

UR := U ∩ P∗(ΓR(4)).

The topological types of smooth real quartic curves are classified by Zeuthen and Klein, and the
result is summarized in [12, Theorem 1.7]. Using this result, we obtain the following:

Theorem 5.9 (Zeuthen (1873) and Klein (1876)). There exists a unique connected component
UR,4 of UR consisting of points u ∈ UR such that the real plane curve Qu(R) is a union of 4
ovals. If u ∈ UR,4, the ovals in Qu(R) are pairwise non-nested, and every bitangent of Qu is
defined over R. □

Remark 5.10. For beautiful pictures of real plane quartic curves with real 28 bitangents, see [11]
and [14, Section 10.5]. These pictures are in fact defined over Q, and were obtained by the
theory of Mordell-Weil lattices.
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For an algebraic variety V defined over R, we denote by H∗(V,Z) the cohomology ring of the
topological space V (C) of C-valued points of V , by

τV : V (C) ∼−→V (C)
the self-homeomorphism of V (C) obtained by the complex conjugation, and by VC the variety
V ⊗R C defined over C. Let S be an algebraic surface defined over R, and let C be a reduced
irreducible curve on SC. Then there exists a unique reduced irreducible curve C ′ on SC such
that τS induces an orientation-reversing homeomorphism C(C) ∼−→C ′(C). We denote this curve
C ′ by τS [C]. Then we have

[τS [C]] = −τ∗S([C])
in H2(S,Z). If C is also defined over R, then τS [C] = C, and hence τ∗S([C]) = −[C]. If H2(S,Z)
is generated by classes of curves defined over R, then τS acts on H2(S,Z) as the multiplication
by −1, and hence, for any curve C (not necessarily defined over R), we have [τS [C]] = [C] in
H2(S,Z).

Lemma 5.11. Let r be a point of UR,4. If c̄ is a 4-tangent conic of Qr, then the 4-tangent conic
τP2 [c̄] of τP2 [Qr] = Qr is in the same connected family as c̄.

Proof. Note that, for φ ∈ ΓR(4) and x ∈ P2(R), the sign of φ(x) is well-defined, because λ4 > 0
for any λ ∈ R×. We choose a defining equation φ ∈ ΓR(4) of Qr in such a way that φ(x) > 0
for any point x of P2(R) in the outside of the ovals of Qr(R). We let Yr be defined over R
by w2 = φ, and consider the self-homeomorphism τY : Yr(C) ∼−→Yr(C) given by the complex
conjugation. For any bitangent l̄ of Qr, each of its Y -lifts l satisfies τY [l] = l, because φ(x) ≥ 0
for any point x of l̄(R). Since the classes of these curves l span SYr = H2(Yr,Z), we see that τY
acts on SYr as the multiplication by −1. Therefore, for any curve C on Yr, we have [τY [C]] = [C].
In particular, if c ⊂ Yr is a Y -lift of c̄, then τY [c] is a Y -lift of the 4-tangent conic τP2 [c̄]. Then
[τY [c]] = [c] in SYr implies that τP2 [c̄] and c̄ belong to the same connected family of 4-tangent
conics. □

Proof of Proposition 5.8. Since UR,4 is open in P∗(ΓR(4)), it follows that UR,4 is Zariski dense
in U , and hence there exists a point r ∈ UR,4∩U ′. By Lemma 5.1, we see that ϖ−1(r) intersects

every connected component of Z(m,n). Let ξ be a point of ϖ−1(r) that belongs to the same
connected component as ζ, and let

Zξ = Qr + l̄′1 + · · ·+ l̄′m + c̄′1 + · · ·+ c̄′n

be the decomposition of Zξ into irreducible components. Remark that Qr and all of its bitangents

are defined over R by the definition of UR,4 (see Theorem 5.9). We choose a path α : I → Z(m,n)

from ζ to ξ. Then we obtain an orientation-preserving homeomorphism

α∗ : (P2, Zζ)
∼−→ (P2, Zξ).

For simplicity, we write τ instead of τP2 . We have an orientation-reversing homeomorphism

τ : (P2, Zξ)
∼−→ (P2, τ [Zξ])

obtained by the complex conjugation. Since

τ [Zξ] = Qr + l̄′1 + · · ·+ l̄′m + τ [c̄′1] + · · ·+ τ [c̄′n],

and, for j = 1, . . . , n, the 4-tangent conic τ [c̄′j ] of τ [Qr] = Qr belongs to the same connected

family as c̄′j by Lemma 5.11, we see that Q(m,n)-curves τ [Zξ] and Zξ have the same deformation
type, and we have an orientation-preserving homeomorphism

β∗ : (P2, τ [Zξ])
∼−→ (P2, Zξ).

Composing α∗, τ , β∗ and α
−1
∗ , we obtain an orientation-reversing self-homeomorphism of (P2, Zζ).

□
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5.4. Homeomorphism types. Let ζ be a point of Z(m,n) such that Zζ has the decomposition

Z = Q+ l̄1 + · · ·+ l̄m + c̄1 + · · ·+ c̄n.

We consider another point ζ ′ ∈ Z(m,n) with the decomposition

Zζ′ = Qu′ + l̄′1 + · · ·+ l̄′m + c̄′1 + · · ·+ c̄′n.

Recall that the involution ιu of Yu acts on the orthogonal complement Σu of hu ∈ SYu as −1.
Let g : SYu

∼−→SYu′ be an isometryof lattices. Suppose that g maps hu to hu′ . Then we have
g ◦ ιu = ιu′ ◦ g. Moreover, by definitions (3.3) and (4.1), the isometry g maps Lu to Lu′ and Fu

to Fu′ . Therefore g induces a bijection P
(m,n)
u

∼−→P
(m,n)
u′ .

Theorem 1.3 is an immediate consequence of the following:

Theorem 5.12. The following are equivalent:

(i) ζ and ζ ′ belong to the same connected component of Z(m,n),
(ii) θ(ζ) and θ(ζ ′) belong to the same connected component of P(m,n),
(iii) there exists an isometry g : SYu

∼−→SYu′ of lattices that maps hu to hu′ and such that the

induced bijection P
(m,n)
u

∼−→P
(m,n)
u′ maps θ(ζ) to θ(ζ ′), and

(iv) there exists a homeomorphism (P2, Zζ)
∼−→ (P2, Zζ′).

Proof. By Proposition 5.8, condition (iv) is equivalent to the following:

(iv)
′
there exists an orientation-preserving homeomorphism (P2, Zζ)

∼−→ (P2, Zζ′).

We will show that (i), (ii), (iii) and (iv)
′
are equivalent. The implication (i) ⇐⇒ (ii) follows

from Lemma 5.1, and (i) =⇒ (iv)′ follows from Example 5.7.
We show (iv)′ =⇒ (iii). Suppose that σ : (P2, Zζ)

∼−→ (P2, Zζ′) is an orientation-preserving
homeomorphism. We can assume, after renumbering the curves, that σ induces homeomorphisms
l̄i

∼−→ l̄′i and c̄j
∼−→ c̄′j that preserve the orientation. We have a homeomorphism σY : Yu

∼−→Yu′

that covers σ, and σY induces an isometry

σSY : SYu
∼−→SYu′ ,

which maps hu to hu′ . If li ⊂ Yu is a Y -lift of a bitangent l̄i ⊂ Zζ , there exists a Y -lift l′i ⊂ Yu′ of
the bitangent l̄′i ⊂ Zζ′ such that σY induces a homeomorphism li

∼−→ l′i preserving the orientation.
In particular, we have σSY ([li]) = [l′i]. The same holds for a Y -lift cj ⊂ Yu of a 4-tangent conic

c̄j ⊂ Zζ . Hence the bijection P
(m,n)
u

∼−→P
(m,n)
u′ induced by the isometry σSY maps θ(ζ) to θ(ζ ′).

Thus (iii) holds.
We show (iii) =⇒ (ii). Suppose that (iii) holds. We choose a path β : I → U from u to the

base-point b and a path β′ : I → U from u′ to b, and consider the isometries

β∗ : SYu
∼−→SYb, β′

∗ : SYu′
∼−→SYb

obtained by the parallel transports along β and β′. Note that β∗(hu) = hb and β′
∗(hu′) = hb.

Hence β′
∗ ◦ g ◦ β−1

∗ is an element of O(SYb, hb). By Theorem 3.1, there exists a loop α : I → U
with the base point b such that

α∗ = β′
∗ ◦ g ◦ β−1

∗ .

Therefore the isometry g : SYu
∼−→SYu′ is equal to the parallel transport γ∗ along the path

γ := β′−1αβ from u to u′. Let

γ̃ : I → P(m,n)

be the lift of γ such that γ̃(0) = θ(ζ). Since g = γ∗ maps θ(ζ) to θ(ζ ′), we see that γ̃(1) = θ(ζ ′).
Therefore θ(ζ) and θ(ζ ′) are in the same connected component of P(m,n). □
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6. Geometry of the K3 surface Xu

We investigate the connected families of 4-tangent conics more closely for a general point
u ∈ U . Our main result of this section is as follows.

Theorem 6.1. Suppose that u ∈ U is general. Then each connected family of 4-tangent conics
c̄ of Qu is parameterized by a rational curve minus 12 + 6 points. A member c̄ of this family
becomes a 3-tangent conic at each of 12 punctured points, and c̄ degenerates into a union of two
distinct bitangents at each of the remaining 6 punctured points.

For the proof, we add the following easy result to Proposition 2.4.

Proposition 6.2. Let c̄ be a 3-tangent conic of Qu. Then γ∗u(c̄) is a union of two one-nodal
rational curves. □

Recall that the double covering ηu : Xu → Yu induces a primitive embedding of lattices
η∗u : SYu(2) ↪→ SXu.

Proposition 6.3. If u ∈ U is general, then η∗u is an isomorphism.

Proof. Kondo [10] studied the moduli of genus-3 curves by considering the periods ofK3 surfaces
X that are cyclic covers of P2 of degree 4 branched along quartic curves Q ⊂ P2. Let j denote
the generator of Gal(X/P2) ∼= µ4 that acts on H2,0(X) as

√
−1. Kondo exhibits an action of

the cyclic group µ4 on the K3 lattice

L := E⊕2
8 ⊕ U⊕3

that is obtained by a marking H2(X,Z) ∼= L. Let LS and LT be the kernel of j∗2 − 1 and of
j∗2+1 on L, respectively. Then LS is of rank 8, and, via the marking, equal to the image of the
pull-back of H2(Y,Z)(2) by the double covering X → Y := X/⟨j2⟩. The period H2,0(X) is a
point of P∗(V√−1), where V

√
−1 is the kernel of j∗−

√
−1 on LT ⊗C. We have dimP∗(V√−1) = 6.

The result of [10] implies that, when Q varies, the point H2,0(X) of P∗(V√−1) sweeps an open
subset of P∗(V√−1).

We fix a marking H2(Xu,Z) ∼= L. Since u ∈ U is general, the period H2,0(Xu) is general in
P∗(V√−1). Since LT ⊗ C = V√−1 ⊕ V√−1, the minimal Z-submodule M of L such that M ⊗ C
contains H2,0(Xu) is equal to LT , and hence its orthogonal complement M⊥ = SXu is equal to
LS = η∗u(SYu(2)). □

Let Rats(Xu) denote the set of rational curves onXu, and Ells(Xu) the set of elliptic fibrations
on Xu.

Proposition 6.4. Suppose that u ∈ U is general. Then Rats(Xu) is equal to the set

L̃u := { η∗u(l) | l ∈ Lu }
of 56 smooth rational curves on Xu.

This proposition is proved by Proposition 6.3 and [13, Proposition 98]. See also [13, Remark
99]. We give a proof, however, because the argument is also used in the proof of Proposition 6.5
below. Recall from the proof of Theorem 4.1 that, for v ∈ Fu, there exists an elliptic fibration
ϕv : Xu → P1 such that the class of a fiber of ϕv is η∗u(v).

Proposition 6.5. Suppose that u ∈ U is general. Then v 7→ ϕv gives a bijection Fu
∼= Ells(Xu).

Each fibration ϕv has no section. The singular fibers of ϕv consist of 6 fibers of type I2 and 12
fibers of type I1.

Proof of Propositions 6.4 and 6.5. The space

{ v ∈ SXu ⊗ R | ⟨v, v⟩X > 0 }
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has two connected components. Let Pu be the connected component containing the ample class
h̃u. For a vector v ∈ SXu ⊗ R with ⟨v, v⟩X < 0, let [v]⊥ be the hyperplane of SXu ⊗ R defined
by ⟨x, v⟩X = 0, and we put (v)⊥ := [v]⊥ ∩ Pu. We then put

Nu := { v ∈ Pu | ⟨v,Γ⟩X ≥ 0 for all curves Γ ⊂ Xu }.

It is well known that Nu is equal to

{ v ∈ Pu | ⟨v,Γ⟩X ≥ 0 for all Γ ∈ Rats(Xu) },

and that each Γ ∈ Rats(Xu) defines a wall of the cone Nu, that is, (Γ)⊥ ∩ Nu contains a
non-empty open subset of (Γ)⊥. Let Nu be the closure of Nu in SXu ⊗ R. For the proof of
Proposition 6.4, it is enough to show that Nu is equal to

N
′
u := { v ∈ SXu ⊗ R | ⟨v, l̃⟩X ≥ 0 for all l̃ ∈ L̃u }.

A face of the cone N
′
u is a closed subset F of N

′
u of the form F = V ∩ N

′
u, where V is

an intersection of some of the hyperplanes [l̃]⊥ (l̃ ∈ L̃u) such that F contains a non-empty
open subset of V . We say that V is the supporting linear subspace of the face F , and put
dimF := dimV . A ray is a 1-dimensional face. For the proof of Nu = N

′
u, it is enough to show

that all rays of N
′
u are contained in Nu. We can calculate all the faces F of N

′
u by descending

induction on d := dimF using linear programming method (see [17, Section 2.2]). The result is
as follows. Suppose that d ≥ 2. Then a linear subspace

(6.1) V = [l̃1]
⊥ ∩ · · · ∩ [l̃k]

⊥

with l̃1, . . . , l̃k ∈ L̃u is the supporting linear subspace of a face F with dimF = d if and only
if k = 8 − d and l̃1, . . . , l̃k are disjoint from each other, that is, their dual graph is the Dynkin
diagram of type (8 − d)A1. Suppose that d = 1. Then a linear subspace V as (6.1) is the
supporting linear subspace of a ray F if and only if one of the following holds:

(7A1) k = 7 and the dual graph of l̃1, . . . , l̃7 is the Dynkin diagram of type 7A1. In this case,

F is generated by a vector v ∈ SXu with ⟨h̃u, v⟩X = 6 and ⟨v, v⟩X = 2. There exist
exactly 576 rays of this type.

(6Ã1) k = 12 and the dual graph of l̃1, . . . , l̃12 is the Dynkin diagram of type 6Ã1, where Ã1

is c c. In this case, F is generated by a primitive vector ṽ with ⟨h̃u, ṽ⟩X = 4 and
⟨ṽ, ṽ⟩X = 0. There exist exactly 126 rays of this type, and these generators ṽ are equal
to η∗u(v) for some v ∈ Fu.

In Table 6.1, the numbers of faces of N
′
u are given.

Suppose that there exists a ray F of N
′
u not contained in Nu. Then the generating class

v ∈ SXu of F given above is effective but not nef. Let D be an effective divisor of Xu such
that [D] = v. Then D contains a smooth rational curve Γ with ⟨Γ, v⟩X < 0 as an irreducible

component. Since h̃u is ample, the (−2)-vector r = [Γ] satisfies ⟨h̃u, r⟩X < ⟨h̃u, v⟩X ≤ 6. We

make the set of all (−2)-vectors r′ ∈ SXu with ⟨h̃u, r′⟩X = 1, . . . , 5, and confirm that this set is

equal to the set of classes of L̃u. In particular, it contains no element r′ satisfying ⟨r′, v⟩X < 0.

This contradiction shows N
′
u = Nu, and Rats(Xu) = L̃u is proved.

It is well known that there exists a bijection between Ells(Xu) and the set of rays contained in
Nu ∩ ∂ Pu. Hence we have |Ells(Xu)| = 126, and v 7→ ϕv gives a bijection from Fu to Ells(Xu).
Therefore, as was shown in the proof of Theorem 4.1, every fiber f of any elliptic fibration ϕv
is a double cover of a splitting conic of Qu. The class of f is equal to η∗u(v). Since no element

l̃ ∈ Rats(Xu) satisfies ⟨f, l̃⟩X = 1, the fibration ϕv has no section. Since the dual graph of the set

of l̃ ∈ Rats(Xu) with ⟨f, l̃⟩X = 0 is of type 6Ã1, the fibration ϕv has exactly 6 reducible fibers,

each of which is either of type I2 or of type III. If l̃i, l̃j ∈ Rats(Xu) are in the same fiber of ϕv,

then they satisfy ⟨l̃i, l̃j⟩X = 2 and hence l̄i := γu(l̃i) and l̄j := γu(l̃j) are distinct bitangents of
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dimF 7 6 5 4 3 2 1
# 56 756 4032 10080 12096 6048 576 + 126

Table 6.1. Numbers of faces F

Qu by Table 2.1. Since u ∈ U is general, the intersection point of l̄i and l̄j is not on Qu. Hence
every reducible fiber of ϕv is of type I2. The irreducible singular fibers are either of type I1 or
of type II. By Lemma 2.2 and Proposition 6.2, we see that all irreducible singular fibers must
be of type I1. Calculating the Euler number, we conclude that the number of singular fibers of
type I1 is 12. □

Remark 6.6. The set of 576 rays of type 7A1 is in bijective correspondence with the set L
{7}
u in

the proof of Theorem 3.1. A ray F of type 7A1 corresponds to a 7-tuple {l1, . . . , l7} ∈ L
{7}
u as

follows. The generator v of F with ⟨v, v⟩X = 2 is the class of the pull-back of a line of a plane
P by the double covering Xu → Yu → P, where Yu → P is the blowing down of the (−1)-curves
l1, . . . , l7.

Proof of Theorem 6.1. In fact, the proof was already given in the last paragraph of the proof of
Proposition 6.5. □

7. Configurations of Y -lifts

Throughout this section, let u be a general point of U .

7.1. Lemmas on quartic polynomials. Let [d1, . . . , dm] be a list of positive integers satisfying
d1 + · · ·+ dm = 4. We put

Γ(d1, . . . , dm : 2) := Γ(d1)× · · · × Γ(dm)× Γ(2),

and denote by ψ[d1,...,dm] : Γ(d1, . . . , dm : 2) → Γ(4) the morphism

(f1, · · · , fm, q) 7→ f1 · · · fm + q2.

Lemma 7.1. The morphism ψ[d1,...,dm] is dominant.

Proof. It is enough to show that ψ[1,1,1,1] is dominant, and then, it suffices to find a point P of
Γ(1, 1, 1, 1: 2) at which the differential of ψ := ψ[1,1,1,1] is of rank dimΓ(4) = 15. By choosing
points P randomly and calculating the rank of dPψ, we can easily find such a point. □

Definition 7.2. For [d1, . . . , dm] with d1 + · · · + dm = 4, we have an open dense subset
V[d1,...,dm] ⊂ Γ(d1, . . . , dm : 2) and a dominant morphism

Ψ[d1,...,dm] : V[d1,...,dm] → U

such that, for p = (f1, . . . , fm, q) ∈ V[d1,...,dm], the quartic curve corresponding Ψ[d1,...,dm](p) ∈ U
is defined by f1 · · · fm + q2 = 0.

Lemma 7.3. If Qu is defined by f + q2 = 0 with f ∈ Γ(4) and q ∈ Γ(2), then Yu has a divisor
that is mapped isomorphically to the divisor {f = 0} of P2.

Proof. The surface Yu is defined by w2 = f + q2, where w is a new variable, and hence contains
a divisor defined by f = w−q = 0. It is obvious that πu maps this divisor to the divisor {f = 0}
of P2 isomorphically. □
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7.2. Triangles of bitangents. Recall that Lu is the set of Y -lifts l of bitangents l̄ ∈ Lu of Qu.

Definition 7.4. A triangle on Yu is a subset {l1, l2, l3} of Lu such that

⟨l1, l2⟩Y = ⟨l2, l3⟩Y = ⟨l3, l1⟩Y = 1.

A liftable triangle of bitangents of Qu is a subset {l̄1, l̄2, l̄3} of Lu that is the image of a triangle
on Yu by πu.

Let l̄1, l̄2, l̄3 be bitangents of Qu. We choose Y -lifts l1, l2, l3 ∈ Lu of l̄1, l̄2, l̄3 in such a way
that ⟨l1, l2⟩Y = ⟨l2, l3⟩Y = 1. Then {l̄1, l̄2, l̄3} is liftable if and only if ⟨l3, l1⟩Y = 1.

Let Tu be the set of triangles on Yu. We have calculated Lu ⊂ SYu explicitly. Using this
data, we enumerate Tu, and see that |Tu| = 2520. Let

Tu := Tu/⟨ιu⟩

be the set of liftable triangles of bitangents of Qu.

Corollary 7.5. There exist exactly |Tu| = 1260 liftable triangles. □

By Theorem 3.1, we obtain the following:

Proposition 7.6. By the monodromy, π1(U , b) acts transitively on Tb and hence on T b. □

Proposition 7.7. Let l̄1, l̄2, l̄3 be bitangents of Qu. Suppose that l̄i is defined by fi = 0 for
i = 1, . . . , 3, where fi ∈ Γ(1). Then {l̄1, l̄2, l̄3} is liftable if and only if there exist polynomials
f4 ∈ Γ(1) and q ∈ Γ(2) such that Qu is defined by f1f2f3f4 + q2 = 0.

Proof. The if-part follows from Lemma 7.3. Let τ̄ : T → U be the finite étale covering obtained
from the family {Tu |u ∈ U }. Then T is irreducible by Proposition 7.6. Let p := (f ′1, . . . , f

′
4, q

′)
be a point of V[1,1,1,1], and we put

u′ := Ψ[1,1,1,1](p) ∈ U

where V[1,1,1,1] and Ψ[1,1,1,1] are given in Definition 7.2. Let l̄′i ⊂ P2 be the line {f ′i = 0}. By the

if-part, we have {l̄′1, l̄′2, l̄′3} ∈ Tu′ . By p 7→ {l̄′1, l̄′2, l̄′3}, we obtain a morphism ΨT : V[1,1,1,1] → T .

Since τ̄ ◦ΨT = Ψ[1,1,1,1], τ̄ is étale, T is irreducible, and Ψ[1,1,1,1] is dominant, we conclude that
ΨT is dominant. Since u ∈ U is general, we obtain the proof. □

Corollary 7.8. There exists a set Ru consisting of 315 subsets {l̄a, l̄b, l̄c, l̄d} ⊂ Lu of size 4 with
the following properties: a subset {l̄i, l̄j , l̄k} ⊂ Lu of size 3 is liftable if and only if there exists

an element {l̄a, l̄b, l̄c, l̄d} ∈ Ru containing {l̄i, l̄j , l̄k}. □

7.3. Pairs of splitting conics. Recall that Fu ⊂ SYu is the set of classes [c] of Y -lifts c of
4-tangent conics c̄ of Qu, and that Fu = Fu/⟨ιu⟩ is regarded as the set of connected families of
4-tangent conics of Qu, or equivalently as the set of connected families of splitting conics of Qu.
For a splitting conic c̄, let [c̄] ∈ Fu denote the connected family containing c̄. By Theorem 3.1,
we obtain the following:

Proposition 7.9. By the monodromy, π1(U , b) acts transitively on Fb and hence on F b. □

Definition 7.10. Let c̄ be a splitting conic of Qu. We say that a decomposition π∗
u(c̄) = c+ c′

is normal if each of c and c′ is a Y -lift of c̄.

Note that, if c̄ is smooth, then the decomposition π∗
u(c̄) = c + c′ is normal, whereas if c̄ is

a sum of two bitangents l̄ + l̄′, then π∗
u(c̄) = c + c′ being normal means that c = l + l′ with

⟨l, l′⟩Y = 1.
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Definition 7.11. Let c̄1 and c̄2 be splitting conics of Qu, and let π∗
u(c̄1) = c1 + c′1 and

π∗
u(c̄2) = c2 + c′2 be the normal decompositions. We put

I([c̄1], [c̄2]) :=

[
⟨c1, c2⟩Y ⟨c1, c′2⟩Y
⟨c′1, c2⟩Y ⟨c′1, c′2⟩Y

]
.

Since we can make switchings c1 ↔ c′1 and c2 ↔ c′2, the matrix I([c̄1], [c̄2]) is well-defined only
up to the transpositions of the two rows and of the two columns.

We have calculated Fu ⊂ Su explicitly. Using this data, we see that the matrix I([c̄1], [c̄2]) is
one of the following:

IA :=

[
0 4
4 0

]
or

[
4 0
0 4

]
,

IB :=

[
2 2
2 2

]
,

IC :=

[
1 3
3 1

]
or

[
3 1
1 3

]
.

Proposition 7.12. Let c̄1 = {g1 = 0} and c̄2 = {g2 = 0} be splitting conics of Qu. Consider
the following conditions:

(i) [c̄1] = [c̄2], that is, c̄1 and c̄2 belong to the same connected family.
(ii) The matrix I([c̄1], [c̄2]) is equal to IA.
(iii) There exists a polynomial q ∈ Γ(2) such that Qu is defined by g1g2 + q2 = 0.

Then we have (iii) =⇒ (ii) ⇐⇒ (i). If (i) holds and c̄1 and c̄2 are general in the connected family
[c̄1] = [c̄2] ∈ Fu of splitting conics, then (iii) holds.

Proof. The implication (i) =⇒ (ii) follows immediately from Table 2.1, and the implication
(iii) =⇒ (ii) follows from Lemma 7.3. Suppose that (ii) holds. Let π∗

u(c̄1) = c1 + c′1 and
π∗
u(c̄2) = c2 + c′2 be the normal decompositions. Interchanging c2 and c′2 if necessary, we can

assume that ⟨c1, c2⟩Y = 0. We put f1 := η∗u(c1) and f2 := η∗u(c2). Note that f1 is a fiber of
the elliptic fibration ϕ1 ∈ Ells(Xu) corresponding to the class [c1] ∈ Fu of c1 by Fu

∼= Ells(Xu).
Since ⟨f1, f2⟩X = 2⟨c1, c2⟩Y = 0, we conclude that f2 is a fiber of ϕ1, that is, the elliptic fibration
corresponding to [c2] ∈ Fu

∼= Ells(Xu) is equal to ϕ1. Therefore c̄1 and c̄2 belong to the same
connected family of splitting conics, and (i) holds. Thus (iii) =⇒ (ii) ⇐⇒ (i) is proved.

Suppose that [c̄1] = [c̄2]. Let σ : F → U be the finite étale covering defined by the family
{Fu |u ∈ U }. By Proposition 7.9, we see that F is irreducible. Let p := (g′1, g

′
2, q

′) be a point
of V[2,2], and we put u′ := Ψ[2,2](p) ∈ U ;

Qu′ = {g′1g′2 + q′ 2 = 0}.

Let c̄′i be the splitting conic {g′i = 0} of Qu′ for i = 1, 2. By the implication (iii) =⇒ (i), we have
[c̄′1] = [c̄′2] in Fu′ . By p 7→ [c̄′1], we obtain a morphism ΨF : V[2,2] → F . By the same argument
as in the proof of Proposition 7.7, we see that ΨF is dominant. Since u is general in U , the point
(u, [c̄1]) = (u, [c̄2]) is general in F and the fiber W of ΨF over (u, [c̄1]) is of dimension

dimΓ(2, 2: 2)− dimU = 18− 14 = 4.

Let S := { c̄(t) | t ∈ P1 } be the connected family of splitting conics containing c̄1 and c̄2. If
(g′1, g

′
2, q

′) is a point of the fiber W , then we have two members c̄′1 = {g′1 = 0} and c̄′2 = {g′2 = 0}
of S, and thus we have a morphism W → P1 × P1, where P1 is the base curve of the family S.
If two points (g′1, g

′
2, q

′) and (g′′1 , g
′′
2 , q

′′) of W are mapped to the same point of P1 × P1, then
there exist scalars λ1, λ2 ∈ C× such that g′′1 = λ1g

′
1 and g′′2 = λ2g

′
2. By the dimension reason,

we see that W → P1 × P1 is dominant. Hence, if c̄1 = {g1 = 0} and c̄2 = {g2 = 0} are general
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members of the family S, there exists a polynomial q ∈ Γ(2) such that (g1, g2, q) ∈ W , that is,
Qu is defined by g1g2 + q2 = 0. □

The following two propositions are confirmed by direct computation.

Proposition 7.13. Among the 1953 non-ordered pairs {[c̄1], [c̄2]} of distinct elements [c̄1], [c̄2] of
Fu, exactly 945 pairs satisfy I([c̄1], [c̄2]) = IB; the remaining 1008 pairs satisfy I([c̄1], [c̄2]) = IC .
When u = b, these two sets of pairs are the orbits of the monodromy action of π1(U , b) on the
set of non-ordered pairs of elements of F b. □

Recall that each connected family [c] ∈ Fu of Y -lifts of splitting conics contains exactly 6
reducible members, and the irreducible components l, l′ of a reducible member satisfy ⟨l, l′⟩Y = 1.
We have a surjective map

{ {l, l′} | l, l′ ∈ Lu, ⟨l, l′⟩Y = 1 } → Fu

defined by {l, l′} 7→ [l] + [l′]. Each fiber of size 6. The following gives how the cases

I([c̄1], [c̄2]) = IB and I([c̄1], [c̄2]) = IC

are distinguished.

Proposition 7.14. Let [c1] and [c2] be elements of Fu, and let [c̄1] and [c̄2] be their images by
Fu → Fu. Then I([c̄1], [c̄2]) = IB holds if and only if there exists a triangle {l1, l2, l3} on Yu
such that [c1] = [l1] + [l3] and [c2] = [l2] + [l3]. □

7.4. Pairs of a bitangent and a splitting conic. Let l̄ be a bitangent of Qu with π∗
u(l̄) = l+l′,

and let c̄ be a splitting conic of Qu with the normal decomposition π∗
u(c̄) = c+ c′. We put

J(l̄, [c̄]) :=

[
⟨l, c⟩Y ⟨l, c′⟩Y
⟨l′, c⟩Y ⟨l′, c′⟩Y

]
.

The matrix J(l̄, [c̄]) is one of the following:

Jα :=

[
0 2
2 0

]
or

[
2 0
0 2

]
,

Jβ :=

[
1 1
1 1

]
.

By direct computation, we confirm the following:

Proposition 7.15. Let l̄ be a bitangent of Qu, and c̄ a splitting conic of Qu. Then J(l̄, [c̄]) is
equal to Jα if and only if the connected family [c̄] ∈ Fu of splitting conics has a singular member
containing l̄ as an irreducible component.

When u = b, the monodromy action of π1(U , b) acts on the set of pairs (l̄, [c̄]) ∈ Lb × F b with
J(l̄, [c̄]) = Jα transitively, and the set of pairs (l̄, [c̄]) with J(l̄, [c̄]) = Jβ also transitively. □

8. Intersection graph

Definition 8.1. An intersection graph is a pentad (Vl̄, Vc̄, T, Ec̄c̄, El̄c̄) such that

• Vl̄ and Vc̄ are finite sets,
• T is a subset of S3

0(Vl̄),
• Ec̄c̄ is a map S2(Vc̄) → {A,B,C}, and
• El̄c̄ is a map Vl̄ × Vc̄ → {α, β}.

Two intersection graphs (Vl̄, Vc̄, T, Ec̄c̄, El̄c̄) and (V ′
l̄
, V ′

c̄ , T
′, E′

c̄c̄, E
′
l̄c̄
) are isomorphic if there ex-

ists a pair of bijections Vl̄
∼= V ′

l̄
and Vc̄ ∼= V ′

c̄ that induces T ∼= T ′, Ec̄c̄
∼= E′

c̄c̄, and El̄c̄
∼= E′

l̄c̄
.
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i |oi| |T | a0 a1 a2

1 2016 0 0 0 0
2 1008 0 0 0 0
3 30240 4 0 0 6
4 60480 6 0 6 9
5 22680 8 2 10 16
6 181440 8 2 14 12
7 5040 8 4 12 12
8 12096 10 0 30 15
9 60480 10 2 24 19
10 1260 12 6 30 30

Table 9.1. The orbit decomposition for (m,n) = (6, 0)

Definition 8.2. For a Q(m,n)-curve Z as in (1.1), we define an intersection graph

g(Z) := (Vl̄, Vc̄, T, Ec̄c̄, El̄c̄)

by the following:

• Vl̄ is {l̄1, . . . , l̄m} and Vc̄ is {c̄1, . . . , c̄n},
• T is the set of liftable triangles {l̄i, l̄j , l̄k} ⊂ {l̄1, . . . , l̄m},
• Ec̄c̄(c̄i, c̄j) is the type of the matrix I([c̄i], [c̄j ]) defined in Section 7.3, and
• El̄c̄(l̄i, c̄j) is the type of the matrix J(l̄i, [c̄j ]) defined in Section 7.4.

Remark 8.3. By Proposition 7.12, the relation

c̄i ∼ c̄j ⇐⇒ Ec̄c̄(c̄i, c̄j) = A

is an equivalence relation on Vc̄, and the functions Ec̄c̄ and El̄c̄ are compatible with this equiva-
lence relation.

Remark 8.4. When n = 0, the intersection graph equal to the two-graph in [5].

It is obvious that, if ζ and ζ ′ are in the same connected component of Z(m,n), the intersection
graphs g(Zζ) and g(Zζ′) are isomorphic. The converse is not true in general, as examples in the
next section show.

9. Examples

9.1. The case (m,n) = (6, 0). We have |P (6,0)
b | = 376740. The action of W (E7) decomposes

P
(6,0)
b into orbits as in Table 9.1. For each orbit oi ⊂ P

(6,0)
b , we choose a point ζ ∈ oi and

indicate the following data of the intersection graph g(Zζ) of Zζ = Qu + l̄1 + · · ·+ l̄6: |T | = k is
the number of the liftable triangles t1, . . . , tk in {l̄1, . . . , l̄6}, and aν is the number of pairs {ti, tj}
of liftable triangles such that |ti ∩ tj | = ν. The orbit o1 and o2 cannot be distinguished by
the two-graph (Vl̄, T ), but they belong to different W (E7)-orbits, and hence the corresponding
Q(6,0)-curves are of different homeomorphism types.

9.2. The case n = 0. We continue to consider the case where n = 0. From the two-graph
g = (Vl̄, T ), we can construct a graph g̃ whose set of vertices is T and whose edge connecting
tµ, tν ∈ T has weight |tµ∩ tν |. If the graphs g̃ and g̃′ are not isomorphic as graphs with weighted
edges, then the two-graphs g and g′ are not isomorphic. Using this method, we prove the
following:

Proposition 9.1. Except for the two orbits o1 and o2 in the case m = 6 described in Section 9.1,

all W (E7)-orbits of P
(m,0)
b are distinguished by their two-graphs. □
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i edge labels orbit sizes

1 AAA 63
2 ABB 1890
3 ACC 2016
4 BBB 3780 + 315
5 BBC 15120
6 BCC 15120
7 CCC 5040 + 336

Table 9.2. The orbit decomposition for (m,n) = (0, 3)

i El̄c̄ Ec̄c̄ orbit sizes

1 [[α, α], [α, α]] A 3780 + 378
2 [[α, α], [α, α]] B 3780 + 1890
3 [[α, α], [α, α]] C 15120
4 [[α, α], [α, β]] B 60480
5 [[α, α], [α, β]] C 60480 + 12096
6 [[α, α], [β, β]] A 12096
7 [[α, α], [β, β]] B 30240
8 [[α, α], [β, β]] C 60480
9 [[α, β], [α, β]] B 45360 + 7560
10 [[α, β], [α, β]] C 30240
11 [[α, β], [β, α]] B 60480
12 [[α, β], [β, α]] C 30240 + 6048
13 [[α, β], [β, β]] B 120960
14 [[α, β], [β, β]] C 120960
15 [[β, β], [β, β]] A 7560
16 [[β, β], [β, β]] B 22680 + 3780
17 [[β, β], [β, β]] C 45360

Table 9.3. The orbit decomposition for (m,n) = (2, 2)

Example 9.2. Let o′1 and o′2 be the orbits in P
(22,0)
b containing 22-tuples obtained by taking

the complement in Lb of 6-tuples in the orbits o1 ⊂ P
(6,0)
b and o2 ⊂ P (6,0) above, respectively.

Let g′1 and g′2 be the two-graphs of o′1 and o′2. We have |T | = 600 for both g′1 and g′2. The
associated graphs g̃′1 and g̃′2 with weighted edges are not isomorphic. The graph g̃′1 has exactly
8203640 triples {tλ, tµ, tν} of liftable triangles with weight |tλ ∩ tµ| = |tµ ∩ tν | = |tν ∩ tλ| = 0,
whereas the number of such triples in g̃′2 is 8203760.

9.3. The case (m,n) = (0, 3). By Remark 8.3, the three edges of the graph (Vc̄, Ec̄c̄) are

labelled as in the second column of Table 9.2. The set P
(0,3)
b of size 43680 is decomposed into

nine W (E7)-orbits with sizes given in the third column of Table 9.2.

9.4. The case (m,n) = (2, 2). There exist 17 intersection graphs indicated in Table 9.3, where
Ec̄c̄ is shown by the type of I([c̄1], [c̄2]), and

El̄c̄ := [[J(l̄1, [c̄1]), J(l̄1, [c̄2])], [J(l̄2, [c̄1]), J(l̄2, [c̄2])]].

The set P
(2,2)
b of size 762048 is decomposed into 23 orbits by the action of W (E7), and their

sizes are given in the 4th column of Table 9.3.

References

[1] Enrique Artal-Bartolo. Sur les couples de Zariski. J. Algebraic Geom., 3(2):223–247, 1994.



QUARTIC CURVES 189
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