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FUNDAMENTAL GROUP OF RATIONAL HOMOLOGY DISK

SMOOTHINGS OF SURFACE SINGULARITIES

ENRIQUE ARTAL BARTOLO AND JONATHAN WAHL

Abstract. It is known that there are exactly three triply-infinite and seven singly-infinite

families of weighted homogeneous normal surface singularities admitting a rational homology

disk smoothing, i.e., having a Milnor fibre with Milnor number zero. Some examples are
found by an explicit “quotient construction”, while others require the “Pinkham method”.

The fundamental group of the Milnor fibre has been known for all except three exceptional

families. In this paper, we settle these cases. We present a new explicit construction for
one of the exceptional families, showing the fundamental group is non-abelian (as occurred

previously only for three families). We show that the fundamental groups for the remaining

two exceptional families are abelian, hence easily computed; using the Pinkham method here
requires precise calculations for the fundamental group of the complement of a plane curve.

Introduction

Let (X, 0) be the germ of a complex normal surface singularity, with neighborhood boundary
(or link) Σ. A smoothing of (X, 0) is a morphism f : (X , 0) → (C, 0), with (X , 0) a three-
dimensional isolated Cohen-Macaulay singularity, equipped with an isomorphism

(f−1(0), 0) ≃ (X, 0).

The Milnor fibreM is the general fibre f−1(δ), a 4-manifold with boundary Σ. The second Betti
number of M is called µ, the Milnor number of the smoothing; the first Betti number always
vanishes [5]. We say f is a QHD (or rational homology disk) smoothing if µ = 0, i.e., the Euler
characteristic χ(M) = 1. In such a case, the 3-manifold Σ has a particularly interesting filling
(e.g., it is Stein).

Example 1. Such smoothings occur for cyclic quotient singularities of type n2

nq−1 ≡ 1
n2 (1, nq−1),

where 0 < q < n, (n, q) = 1 ([15, (2.7)]). One proceeds as follows; if f(x, y, z) = xz − yn, then
f : C3 → C is a smoothing of the An−1 singularity, whose Milnor fibre M is simply connected,
with Euler characteristic n. Let G ⊂ GL(3,C) by the diagonal cyclic group generated by
[ζ, ζq, ζ−1], where ζ = exp 2πi

n . The group G acts freely on C3 \ {0} and f is G-invariant; so the

induced map f : C3/G→ C is a smoothing of the cyclic quotient singularity An−1/G, which has

type n2

nq−1 . The new Milnor fibre is the free quotient M/G, of Euler characteristic 1, hence is a

QHD. We call this class Gn,q.

In the early 1980’s, the second named author produced 9 other families (e.g., [16, (5.9.2)], but
mainly unpublished). As with the family Gn,q, some examples can be produced by an explicit
“quotient construction”.

Start with a smoothing f : (Y, 0) → (C, 0) of some 2-dimensional germ (Y, 0), with simply
connected Milnor fibre M . Assume G is a group of automorphisms of (Y, 0) acting fixed point
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http://dx.doi.org/10.5427/jsing.2022.24e


FUNDAMENTAL GROUP OF RATIONAL HOMOLOGY DISK SMOOTHINGS 127

freely off 0, with f G-invariant. Then f : (Y/G, 0) → (C, 0) is a smoothing of Y/G with Milnor
fibre M/G. If χ(M) = |G|, then χ(M/G) = 1, so M/G is a QHD.

This method can produce equations for the families eventually named W(p, q, r), N (p, q, r),
A4(p), B4(p), and C4(p) (here p, q, r ≥ 0); the Y involved could be C3, a hypersurface singularity
in C4, or the cone over a del Pezzo surface in P6. All these singularities are weighted homoge-
neous, and a superscript denotes the valence of the central curve in the graph of the minimal
good resolution.

It turns out that other (and in fact all) weighted homogeneous QHD examples can be con-
structed by using the Pinkham method of “smoothing of negative weight” [12], [18]:

• Consider the projective C∗-compactification of the singularity;
• resolve at infinity to obtain a curve configuration E′;
• if possible, smooth the projective surface keeping E′ fixed.
• The projective general fibre Z is a rational surface containing a configuration D′ iso-
morphic to E′, obtained by blowing-up P2 along an appropriate plane curve D so that
D′ is the total transform of D minus several curves.

• Then Z \D′ is the Milnor fibre of the smoothing.

The Milnor fibre is a QHD when the components of D′ rationally span PicZ. Given some
cohomological vanishing conditions, Pinkham’s construction allows one to go backwards from
a given pair (Z,D′) to a QHD smoothing of a weighted homogeneous surface singularity. The
group π1(Z \ D′) is difficult to compute in general, unless one already knows that π1(P2 \ D)
is abelian; this occurs for types W,N , and M, since here D can be taken to be four lines in
general position.

The possible resolution graphs of any (X, 0) admitting a QHD smoothing were greatly re-
stricted by the results of [13], which also gave names to the known examples. For (X, 0) weighted
homogeneous, these turned out to be the only ones, via:

Theorem 2 (Bhupal-Stipsicz Theorem [1]). The weighted homogeneous surface singularities
admitting a QHD smoothing are the following families: Gn,q, W(p, q, r), N (p, q, r), M(p, q, r),
B3
2(p), C3

2(p), C3
3(p), A4(p), B4(p), and C4(p).

Some further results are as follows:

(1) By earlier results of Laufer ([8]), for the first seven families, the analytic type is uniquely
determined by the graph of the singularity. For the valence 4 examples, there is in each
case a unique cross-ratio for which a QHD smoothing exists ([2]).

(2) In the base space of the semi-universal deformation of these singularities, a QHD smooth-
ing component has dimension one, and there are one or two such components ([2], [19,
(7.2)]).

(3) The first homology of the Milnor fibre is isomorphic to a self-isotropic subgroup ofH1(Σ),
the discriminant group of the singularity ([9]).

(4) Every QHD smoothing arises from a quotient construction Y → Y/G, where Y is canon-
ical Gorenstein and G = π1(M) [18]. In general, the embedding dimension of Y can be
arbitrarily large, so one cannot expect explicit equations, and only the Pinkham method
seems available.

(5) The fundamental group of the Milnor fibre is abelian for the families G, W, N , M, and
non-abelian metacyclic for A4,B4, C4 ([2], [17], [19]).

The main results of this paper consider the three exceptional cases for which π1(M) was
unknown, namely B3

2(p), C3
2(p), and C3

3(p). We state the results and list the resolution dual
graphs (with the convention that no weight means −2).

Theorem 3. The fundamental group of the QHD smoothing of C3
2(p) is cyclic, of order 3(p+3).

Theorem 4. The fundamental group of the QHD smoothing of C3
3(p) is cyclic, of order 2(p+4).
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p︷ ︸︸ ︷−(p+ 3) −3

−6

Figure 1. Resolution dual graph of C3
2(p)

p︷ ︸︸ ︷−(p+ 4)

−6

Figure 2. Resolution dual graph of C3
3(p)

Theorem 5. The fundamental group of the QHD smoothing of B3
2(p) is non-abelian of order

4(p + 2)(p + 3), with an index 2 cyclic subgroup and abelianization of order 4(p + 3). There is
an explicit quotient construction, with Y a hypersurface singularity in C4.

p︷ ︸︸ ︷−(p+ 3) −3 −4

−4

Figure 3. Resolution dual graph of B3
2(p)

In all three cases, one can use the plane curves D and their blow-ups to produce the pair
(Z,D′) for which one must compute the fundamental group of the complement. The proofs can
be found at §2.2, §2.3 and §2.4.

For B3
2(p), the precise description of the fundamental group has allowed us to find a direct

quotient construction in §1.2.The first author initially did the computation in case p = 0, dis-
covering that the group was non-abelian, of order 24. The second author used this unexpected
result to first construct a non-abelian cover of degree 24 of the original singularity, a complete
intersection in C4, and then to find a fixed-point free 4-dimensional representation of the group
leaving this cover and its smoothing invariant. The first author later extended his computation
of the fundamental group for all p, while independently the second author extended the explicit
construction for all p, as in Theorem 1.1 below. Once a quotient construction for all p is ob-
tained, the results of Fowler [2] imply there is only one QHD smoothing, so the fundamental
group computations using D become unnecessary. Nonetheless, a detailed presentation of these
results is included in §2.2, as the computational methods are important and illustrate a basic
method.

Acknowledgments. This paper originated from fruitful conversations after a talk by the second
author at the Némethi Conference in Budapest in May 2019. The scientific environment of
this event, and the financial support given by the conference organizers, made possible initial
discussions among the authors and eventually led to this work.
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1. The family B3
2(p)

From Figure 3 we see that the continued fraction expansion of the long arm, starting from
the outside, arises from 2(p+ 2)2/(2p+ 3), and the discriminant group has order 16(p+ 3)2; it
follows that the first homology group of the Milnor fibre has order 4(p+ 3).

Theorem 1.1. For each p ≥ 0, there is a hypersurface singularity (Y, 0) ⊂ (C4, 0), a group
G ⊂ SL(4,C) acting freely on Y \ {0}, and a G-invariant function f , so that f : Y/G → C
provides the QHD smoothing of a singularity of type B3

2(p).

Writing down explicitly the equations and the representation of G, it is straightforward to
construct a QHD smoothing whose Milnor fibre has G as fundamental group. What takes
extensive computation is the verification that the smoothed singularity is of type B3

2(p).

1.1. The group G.
Let m ≥ 2 be an integer, N = 2m(m+1), ω a primitive N th root of 1. Consider the diagonal

linear transformation of C4 given by

S(a, b, c, d) = (ωa, ω−(2m+1)b, ω2m+1c, ω−1d).

The action S can be also be written

S =
1

N
[1, −(2m+ 1), 2m+ 1, −1].

This allows one to quickly write down Sp when N = pN ′; replace 1
N by 1

N ′ , and then reduce the
entries in [•, •, •, •] mod N ′.

Let ζ = ωm a primitive (2m+ 2)th root of 1, and define

T (a, b, c, d) = (ζb, a, d, ζ−1c).

One easily finds

SN = I, TST−1 = S−(2m+1), T 2 = Sm =
1

2m+ 2
[1, 1,−1,−1].

Let G = Gm ⊂ SL(4,C) be the group generated by S and T .

Proposition 1.2. The following properties hold for G:

(G1) |G| = 2N = 4m(m+ 1).
(G2) The abelianization of G has order 4(m+ 1), is cyclic when m is odd, and is

Z/(2(m+ 1))× Z/(2) if m is even.

(G3) The center of G is the cyclic group generated by Sm, of order 2(m+ 1).
(G4) SiT has even order > 2.
(G5) G acts freely on C4 off the origin.

Proof. The first two statements are straightforward. One sees that no SiT commutes with S,
so the center is generated by a power of S, easily seen to be Sm. The powers of ω that occur in
S are all primitive roots of 1, so the subgroup generated by S acts freely on C4 \ {0}. Note

(SiT )2 = S−m(2i−1),

which can not equal the identity, so itself has no fixed points; thus, SiT has no fixed points. □

Remark 1.3. One could also consider the simpler linear transformation T ′ defined by

T ′(a, b, c, d) = (b,−a, d,−c),
and the group G′ ⊂ SL(4,C) that S and T generate. One now has

SN = I, T ′2 = Sm(m+1) = −I, T ′ST ′−1 = S−(2m+1).
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When m is even, G′ is isomorphic to G, as seen by setting T ′ = S
m+2

2 T ; one may use this
representation to consider later simpler polynomials xw − yz and zw − x2m + y2m.

However, when m is odd, G′ is not isomorphic to G, and does not act freely on C4 \ {0}
because S

m+1
2 T ′ has order 2 and fixed points. The relevant representation of G is now more

complicated than in the even case.

We make some additional remarks about the group G, which however are not used later on.
Define the generalized quaternion 2-group Qr by generators and relations as

Qr : A
2r−1

= 1, A2r−2

= B2, BAB−1 = A−1.

Then |Qr| = 2r, Qr−1 ⊂ Qr (use generators A2 and B), and Q3 is the usual quaternion group
of order 8.

Proposition 1.4. For G as above, write N = 2m(m+ 1) = 2r+1p, where p is odd.

(Q1) H = ⟨S2r+1⟩ is a cyclic normal subgroup of order p, consisting of all elements of odd
order.

(Q2) If m is odd, write m + 1 = 2r(2u − 1), and J = ⟨SuT ⟩. Then J is a cyclic Sylow
2-subgroup of order 2r+2, and G is the semi-direct product of H and J .

(Q3) If m = 2rq is even (with q odd), the Sylow 2-subgroup

J = ⟨Sq(m+1), S
m+2

2 T ⟩
is isomorphic to Qr+2, and G is the semi-direct product of H and J .

(Q4) The 2-Sylow subgroup of G is normal if and only if m is a power of 2, in which case G

is the direct product of H = ⟨Sm⟩ and J = ⟨Sm+1, S
m+2

2 T ⟩.

Proof. (Q1) is straightforward. For (Q2), note S has order N = 2r+1m(2u − 1) and
(SuT )2 = S−m(2u−1), so J is cyclic of order 2r+2, hence is a 2-Sylow subgroup. Since G = HJ ,
H ∩ J = {I}, and H is normal, one has a semi-direct product.

In (Q3), one checks that the given generators of J match the generators and relations of Qr+2;
it follows as before that there is a semi-direct product decomposition.

For (Q4), normality of J in the case of m odd would imply G is abelian, which is never

true. For m even, normality of J implies that the conjugate S · Sm+2
2 T · S−1 is of the form

Siq(m+1) · Sm+2
2 T , for some i. A calculation shows this is equivalent to S(m+1)(qi−2) = I, so

2r+1q divides qi− 2. Since q, which is odd, divides 2, we have q = 1, and one can set i = 2. One

easily checks that the T -conjugate of S
m+2

2 T is also in J . □

Remark 1.5. The groups G, with a fixed-point free representation, have the familiar property
(seen for instance in [20]) that odd order Sylow subgroups are cyclic, and the 2-Sylow is either
cyclic or contains an index two cyclic subgroup. An avid reader might wish to locate the groups
above in the complete chart in [20, Section 7.2].

1.2. The equations.
The representation above of G acting on C4 has its contragredient representation acting on

the coordinate functions x, y, z, w, via

S(x, y, z, w) = (ω−1x, ω2m+1y, ω−(2m+1)z, ωw)

T (x, y, z, w) = (ζ−1y, x, w, ζz).

Proposition 1.6. The group G acts freely on C4 off the origin, leaves invariant the hypersurface
singularity

Y = {zw + x2m + ζy2m = 0} ⊂ C4,

and fixes the polynomial
f(x, y, z, w) = xw + yz.
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Thus f : Y/G → C is a smoothing of the G-quotient of the isolated complete intersection
singularity Y = Y ∩ {f = 0} ⊂ C4.

Proof. The only new item needed is the simple calculation that Y has an isolated singularity at
the origin. □

The map f : Y → C gives a smoothing of Y . By Hamm-Lê (e.g., [6]), the Milnor fibre
M = f−1(δ) is simply connected. The Euler characteristic can be computed from the Greuel-
Hamm formula [4] for weighted homogeneous complete intersections, yielding

χ(M) = 1 + µ = 4m(m+ 1).

The group G acts freely on Y \ {0} and M . As χ(M) = |G|, M/G has Euler characteristic 1,
hence is a rational homology disk whose fundamental group is isomorphic to G.

Proposition 1.7. The map f : Y/G → C gives a rational homology disk (QHD) smoothing of
the singularity Y/G, whose Milnor fibre has non-abelian fundamental group G.

The following section is devoted to the proof of the following proposition.

Proposition 1.8. The singularity Y/G is of type B3
2(m− 2).

A priori, one knows the quotient is a rational singularity with discriminant the square
[4(m + 1)]2. The standard approach (e.g., [12] or [17]) is to lift the action of G from Y to
its Seifert partial resolution S → Y , the result of weighted blow-up, which has a smooth central
curve C along which are cyclic quotient singularities. The quotient S/G will be the Seifert
resolution of Y/G. The resolution space S has a covering {Si} by 4 open affines, corresponding
to weighted inversion of the coordinates. One identifies singular points and fixed points of the
action of G along C on each affine, as well as on certain partial quotients. At the end, one
finds three singular points on a rational curve, whose self-intersection on its minimal resolution
is computable from knowledge of the discriminant.

1.3. Resolution of Y/G.
If Ct has coordinates zi with positive integer weights ni (without common divisor), the

weighted blow-up is a map U → Ct, with fibre over the origin the weighted projective space
Pn = P(n1,··· ,nt). The space U has an open affine covering Ui, each of which is a quotient of an
affine space Vi by a cyclic group of order ni. For instance, V1 has coordinates A1, . . . , At, related
to the zi via

z1 = An1
1 , z2 = An2

1 A2, . . . , zt = Ant
1 At;

the quotient U1 equals V1 modulo the action on the Ai’s of the cyclic group generated by

1

n1
[−1, n2, . . . , nt].

Weighted blow-up of C4, with coordinates x, y, z, w and weights 1, 1,m,m, induces a weighted
blow-up S → Y , covered by 4 affines Si. The exceptional fibre is a smooth projective curve
C ⊂ Pm = P(1,1,m,m).

Inverting first x, S1 has coordinates

x = A1, y = A1A2, z = Am1 A3, w = Am1 A4,

with equations

A4 =−A2A3

A3A4 = −(1 + ζA2m
2 ).

Thus in coordinates A1, A2, A3, S1 is defined by

A2A
2
3 − 1− ζA2m

2 = 0,
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while C is given by A1 = 0. Both the surface and the curve are smooth. Rewriting C as

(A2A3)
2 = A2(1 + ζA2m

2 ),

its function field is a double cover of the affine line branched at 2m + 1 points; so, C is a
hyperelliptic curve of genus m.

The group G lifts to a group of automorphisms of S. On S1,

S(A3) = S(zx−m) = (ω−(2m+1)z)(ω−1x)−m = ω−(m+1)zx−2m = ω−(m+1)A3,

while
T (A3) = T (z)T (x)−m = w(ζ−1y)−m = ζmA4A

−m
2 = ζ−1A3A

1−m
2 .

We summarize as

S(A1, A2, A3) =(ω−1A1, ω
2m+2A2, ω

−(m+1)A3)

T (A1, A2, A3) =(ζ−1A1A2, ζA
−1
2 , ζ−1A3A

1−m
2 ).

The group G acts on S1 (A2 is never 0 there). Note S2m is a pseudo-reflection, sending A1

to ω−2mA1, leaving A2 and A3 fixed. Then S̄1 = S1/⟨S2m⟩ has as coordinates the invariants
Am+1

1 ≡ Ā1, A2, and A3, with equation

A2A
2
3 = 1 + ζA2m

2

and central curve C defined by Ā1 = 0. Then Ḡ = G/⟨S2m⟩ acts on S̄1 as follows: Let
η = ω−(m+1), a primitive (2m)th root of 1. Then

S(Ā1, A2, A3) =(ηĀ1, η
−2A2, ηA3)

T (Ā1, A2, A3) =(−Ā1A
m+1
2 , ζA−1

2 , ζ−1A3A
1−m
2 ).

We describe all fixed points of elements of Ḡ and their orbits.
First, Sm fixes all points of the form (0, a, 0), where a is a (2m)th root of −ζ−1 = ζm. Defining

a square root of ζ by τ2 = ζ, a is of the form τηk, k = 0, · · · , 2m− 1. These 2m fixed points are
permuted by powers of S, which sends for instance a = τηk to τηk+2. In particular, there are 2
G-orbits of these fixed points, corresponding to a = τ and a = τη.

A calculation shows that

SkT (Ā1, A2, A3) = (ηm−kĀ1A
m+1
2 , ζη2kA−1

2 , ζ−1η−kA3A
1−m
2 )

has two fixed points as above, where a = ±τηk; note that in Ḡ, (SkT )2 = Sm. Thus the isotropy
subgroup of Ḡ at a = τ is the cyclic group of order 4 generated by T , and similarly the isotropy
group at a = τη is generated by ST . At the point (0, τ, 0), generators for the local ring are Ā1

and A3, with C given by Ā1 = 0. As

T (Ā1, A2, A3) = (−Ā1A
m+1
2 , ζA−1

2 , ζ−1A3A
1−m
2 ),

the action on the tangent space when A2 = τ is checked to be scalar multiplication by τ−(m+1),
which is a primitive 4th root of 1. The quotient is the singularity 1

4 [1, 1] whose minimal resolution
is a single smooth rational curve of self-intersection −4. The same calculation holds at the fixed
point when A2 = τη. These two orbits are the only fixed points of Ḡ on S̄1, so the quotient
has two (−4)-singularities along the central curve. The rationality of the central curve is known
because one has a QHD smoothing, or can be seen directly as follows: Invariants of Sm on S̄1

are M = Ā1
2
, N = Ā1A3, P = A2

3, and A2, so the quotient is defined by equations

MP = N2, A2P = 1 + ζA2m
2 .

The image of C is given by M = N = 0 and the plane curve A2P = 1+ ζA2m
2 , which is clearly

rational (P is a function of A2).
So, the quotient S1/G consists of a surface with exactly two (−4)-singularities along a rational

curve.
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Since S1 ∩C consists of all points of C with first quasi-homogeneous coordinate non-0, there
remains to consider only the behavior of S and the group action near the other points of C,
namely [0 : 0 : 1 : 0]m and [0 : 0 : 0 : 1]m. As T permutes these points, we need only look at the
action of ⟨S⟩ on S3 near the first of these.

So, consider the weighted blow-up from inverting z. One has an affine space with coordinates

z = Bm1 , x = B1B2, y = B1B3, w = Bm1 B4,

divided by the diagonal action of
1

m
[−1, 1, 1,m].

The proper transforms of the two equations defining X yield

B2B4 +B3 = 0, B4 +B2m
2 + ζB2m

3 = 0,

which define a non-singular surface S ′
3, given in coordinates B1, B2, B4 by

B4 +B2m
2 (1 + ζB2m

4 ) = 0,

with central curve given by B1 = 0. To reach the surface S3, one divides by the diagonal action,
giving invariants Bm1 = z, B1B2 = x, Bm2 ≡M , and B4, now satisfying

zM = xm, B4 +M2(1 + ζB2m
4 ) = 0,

with central curve z = x = 0. Thus, S3 has a singularity of type Am−1 at the origin, correspond-
ing to the point [0 : 0 : 1 : 0]m of C. We conclude that the Seifert resolution S of the singularity
consists of a central hyperelliptic curve of genus m along which are two Am−1 singularities.

Note S lifts to an action on S3, calculated to be

S(z, x,M,B4) = (ω−(2m+1)z, ω−1x, ωm+1M, ω2m+2B4).

To complete the description of S/G, it suffices to consider the quotient of S3 by ⟨S⟩ at the
singular point.

For this purpose, it is easier to extend S to the m-fold cover S ′
3, which is smooth. In the

relevant coordinates B1, B2, and B4 define

S̄ =
1

mN
[−(2m+ 1), m+ 1, 2m(m+ 1)].

This extension has the property that S̄N = 1
m [−1, 1, 0], so dividing gives S3; and

S̄m =
1

N
[−(2m+ 1),m+ 1, 0]

gives the same action above of S on the coordinates z = Bm1 , x = B1B2,M = Bm2 , and B4 of S3.
So, it suffices to decipher the action of S̄ on S ′

3. Now,

S̄2m2

=
1

m+ 1
[1, 0, 0]

is a pseudoreflection, multiplying B1 by ω2m and fixing B2 and B4. Dividing by the group it
generates and letting B̄1 = Bm+1

1 , one has coordinates B̄1, B2, B4, the same equation as before
(with B̄1 = 0 the central curve), and group action

S̄ =
1

2m2
[−(2m+ 1), 1, 2m]

on a smooth surface. This action is free except that S̄m has fixed points when the first two
coordinates are 0 (and hence so is the last). Local coordinates at this point are B̄1 and B2,
and the group action is 1

2m2 [−(2m + 1), 1]. To describe the resolution of this cyclic quotient

singularity on S/G in relation to the curve which is the image of B̄1 = 0, we apply the following
well-known result.
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Lemma 1.9 ([7, pp. 9,10]). Consider the cyclic action (x, y) 7→ (µx, µqy) on C2, where µ is a
primitive nth root of 1, 0 < q < n, (q, n) = 1. Write the continued fraction expansion

n

q
= a1 −

1

a2 −
1

. . . −
1

as−1 −
1

as

.

Then the minimal resolution graph of the quotient is

−a1 −a2 −as

and the curve on right intersects transversally the proper transform of the image of x = 0.

Combining what has already been proved about S/G, one knows the resolution graph of the
minimal resolution of Y/G, except for the self-intersection −d of the central curve. The standard
calculation of the order of the discriminant group involves d and the outward continued fraction
expansions from the center; in this case, it is

4 · 4 · 2m2

[
d− 1

4
− 1

4
− 2m2 − 2m− 1

2m2

]
.

Comparing with the known discriminant value of 16(m + 1)2, one concludes that d = 2. One
therefore has the graph B3

2(m− 2).

Remark 1.10. Assuming the Bhupal-Stipsicz Theorem, one can by process of elimination con-
clude that Y/G has type B3

2. For, excluding types C3 and B3, the only example with non-abelian
group and quotient smoothing of a complete intersection singularity is type B4(p). However, its
fundamental group is metacyclic, and the commutator subgroup has index and order incompat-
ible with our G. To rule out C3, either use the other theorems in this paper; or, note that Y/G
has a graded involution of order 2 (using a “square root” of S), whereas neither C3 type could
have such a symmetry.

2. Zariski-van Kampen computations

2.1. Fundamental group of the complement of a line arrangement.
Let L be the projective line arrangement of P2 in Figure 4 (the line at infinity is not part of

L), which is the curve D of [2] for B3
2(p). We are going to use the Zariski-van Kampen method to

compute π1(P2 \ L) together with precise descriptions of meridians close to the singular points,
in order to be able to find meridians of the exceptional components of successive blowing-ups.

Let us denote with small letters the standard meridians in the vertical dotted line of Fig-
ure 4. Let A := {ℓ1, ℓ2, ℓ3, ℓ4, a1, a2, a3}. We denote the multiple points as Pij := Li ∩ Lj and
Ri := Aj ∩Ak (where {i, j, k} = {1, 2, 3}).

Let us clarify what we mean by standard meridians. In a punctured plane C \ ∆, where
∆ is an ordered finite set {z1, . . . , zr}, a geometric basis of of π1(C \ ∆; ∗), where z0 ∈ R,
z0 ≫ 0, is a family of meridians as in Figure 5 where the product zr · . . . · z1 is homotopic to the
counterclockwise boundary of a big disk.

We follow the classical method of Zariski-van Kampen. Let us fix a base point p := (x0, y0),
where x0 is the coordinate of the dotted line in Figure 4, where the standard meridians lie. We
know that A generates G := π1(P2 \ L; p), and since the line at infinity is not part of L, the
following relation holds:

(∞) 1 = ℓ3 · a2 · a3 · ℓ4 · ℓ2 · a1 · ℓ1
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L1

L2

L3

L4

A1

A2

A3

Figure 4. 7-line arrangement

z0
z1z2z3

Figure 5. Geometric basis, r = 3

The rest of the relations will be found using the Zariski-van Kampen method. In order to find
them we need to enlarge the concept of standard meridian. In a vertical line x = x1 we can
consider also a geometric basis with base point (x1, y0). These new meridians can be seen as
elements of G if we conjugate them by a path joining p and (x1, y0) in the horizontal line y = y0
which avoids the x-coordinates of the multiple points of L. These new meridians can be written
in terms of the original ones, and this is usually the difficult part of the Zariski-van Kampen
method. The real picture in Figure 4 provides all the needed information.

Let us recall how this works for double and triple points using Figure 6. In both cases the
standard generators to the left of the multiple point are expressed in terms of the generators to
the right, taking into account the relations created by the singular point [a, b] = 1 for a double
point and c · b · a = b · a · c = a · c · b for a triple point; we will denote the second relation as
[c, b, a] = 1. Note that the element e commutes with the involved meridians in each case. If we
call E the exceptional component of the blowing-up of the multiple point, then e is a meridian
of this component.

Let us consider the multiple points to the left of the dotted vertical line, see Figure 7. We
obtain the following relations:

[ℓ2, a1, ℓ1] = 1(ρ12)

[a3, ℓ4, ℓ1] = 1(ρ14)
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a

ab

b

e = b · a

[a, b] = 1

a

a

a−1 · b · a b

c

c

e = c · b · a

a−1 · b · a = c · b · c−1

[e, a] = [e, b] = [e, c] = 1

Figure 6. Local picture at double and triple points

[ℓ3, a2, ℓ1] = 1(ρ13)

[a3, ℓ2 · a1 · ℓ−1
2 ] = 1(ρ2)

ℓ1

ℓ1
ℓ2·a1·ℓ−1

2
a1

ℓ2

ℓ2

P12

ℓ1

ℓ1
a3·ℓ4·a−1

3 ℓ4

a3

a3

P14

ℓ1

ℓ1
ℓ3·a2·ℓ−1

3
a2

ℓ3

ℓ3

P13

ℓ2·a1·ℓ−1
2

a3

R2

Figure 7. Multiple points to the left of the dotted vertical line

Let us continue with the multiple points to the right of the dotted line, see Figure 8. Since
we always avoid the singular fiber running counterclockwise, the situation of Figure 6 applies,
interchanging left and right.

a2

a2a3

a3

R1

a2

a2

ℓ4 a2·ℓ4·a−1
2

ℓ2

ℓ2

P24

a2

a2a1

a1

R3

ℓ3

ℓ3
a3 ℓ3·a2·ℓ−1

3

ℓ2

ℓ2

P23

ℓ3

a2·ℓ4·a−1
2

a1

P34

Figure 8. Multiple points to the right of the dotted vertical line

We obtain the following relations:

[a2, a3] = 1(ρ1)

[a2, ℓ4, ℓ2] = 1(ρ24)

[a1, a2] = 1(ρ3)

[ℓ3, a3, ℓ2] = 1(ρ23)

[ℓ3, a2 · ℓ4 · a−1
2 , a1] = 1(ρ34)

Let us summarize these computations.

Proposition 2.1. The group G = π1(P2 \L) is generated by A with relations (∞), (ρ12), (ρ13),
(ρ14), (ρ23), (ρ24), (ρ34), (ρ1), (ρ2), and (ρ3).

This is a non-abelian group, as it is the case for any line arrangement having more-than-double
points. In fact, this presentation has redundant generators and relations but it will be useful
to express the meridians of the exceptional components of the blow-ups. If we blow up a point
Pij , we denote by Eij its exceptional component and by eij a suitable meridian. In the same
way, if we blow up a point Ri, we denote by Ei its exceptional component and by ei a suitable
meridian.
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Lemma 2.2. The meridians eij , ei have the following expressions in terms of the generators
of G:

e12 := ℓ2 · a1 · ℓ1 e13 := ℓ3 · a2 · ℓ1
e14 := ℓ1 · a3 · ℓ4 e23 := ℓ3 · a3 · ℓ2
e24 := ℓ2 · a2 · ℓ4 e34 := a2 · ℓ4 · a−1

2 · a1 · ℓ3
e1 := a2 · a3 e2 := a3 · ℓ2 · a1 · ℓ−1

2

e3 := a1 · a2.

2.2. Fundamental group of the complement of the Milnor fiber of a smoothing of
B3
2(p).
In this subsection we perform the direct computation of the fundamental group of the Milnor

fiber of a smoothing of B3
2(p); the result coincides with the group described in §1.1.

Let π : X2
3 → P2 the composition of the following blowing-ups. First we blow-up all the

points Pij . In this intermediate surface, we blow up Q1 (resp. Q2), the intersection point of E23

(resp. E14) and the strict transform of A3. Finally we perform p+1 extra blowing-ups over R3,
all of them on the intersection point of the strict transform of A1 and the previous exceptional
component. It is obvious that X2

3 \π−1(L) is isomorphic to P2 \L. The curve π−1(L) has 16+p
connected components (see Figure 9).

Let B ⊂ π−1(L) the curve obtained as union of the strict transforms of Lj , Ai and E14, E23, E12

and the strict transforms of the first p exceptional components over R3, i.e, 10 + p connected
components. It is a normal crossing divisor whose dual graph is shown in Figure 9.

Q1Q2

L4 E14 L1 E12

−1

L2 E23 L3

A1
−(p+ 2)

A3

A2

−3

E3,1E3,p

E3,p+1

E13E24

E34

Figure 9. Missing self-intersections are −2 if black and −1 if gray.

The missing curves are E13, E24, E34, the last exceptional component over R3, and the excep-
tional divisors coming from Q1, Q2; the meridians of those ones are

e3,j := aj1 · a2
q1 := e23 · a3 = ℓ2 · ℓ3 · a23
q2 := e14 · a3 = ℓ4 · ℓ1 · a23.

In order to compute G1 := π1(X
2
3 \ B) we need the following classical result.
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Proposition 2.3 ([3, Lemma 4.18]). Let X be a smooth complex projective surface, D ⊂ X a
reduced divisor, and D′ = D ∪A1 ∪ · · · ∪Ar, where A1, . . . , Ar are the irreducible components of
D′ which are not in D.

Let i∗ : π1(X \ D′) → π1(X \ D). Then i∗ is surjective and ker i∗ is generated by all the
meridians of the components Ai in X.

This statement is sharper than Fujita’s original one, where r = 1 and A1 must be transversal
to D; the combination of induction and embedded resolution of D reduces this statement to the
original one.

Therefore, G1 is isomorphic to the quotient of G by the normal subgroup generated by e13,
e24, e34, e3,p+1, q1, and q2. A presentation of G1 is obtained from the presentation of G by
adding the relations coming from killing the above meridians; we can forget the relations (ρ12),
(ρ24), (ρ34) and (ρ3). Summarizing, G1 is generated by A, i.e., ℓ1, . . . , ℓ4, a1, a2, a3, with the
following relations:

(ρ1) [a2, a3] = 1

a2 · ℓ4 · ℓ2 = 1(σ24)

ℓ3 · a2 · ℓ1 = 1(σ13)

ℓ3 · a2 · ℓ4 · a−1
2 · a1 = 1(σ34)

ap+1
1 · a2 = 1(σ3)

(∞) ℓ3 · a2 · a3 · ℓ4 · ℓ2 · a1 · ℓ1 = 1 ⇐⇒ a3 · a1 = a2

ℓ2 · ℓ3 · a23 = 1(τ1)

ℓ4 · ℓ1 · a23 = 1(τ2)

(ρ12) [ℓ2, a1, ℓ1] = 1

(ρ14) [a3, ℓ4, ℓ1] = 1 ⇔ ℓ1 · a3 · ℓ4 · a3 = 1 ⇔ [ℓ1, a3]=[ℓ4, a3] = 1

(ρ2) [a3, ℓ2 · a1 · ℓ−1
2 ] = 1

(ρ23) [ℓ3, a3, ℓ2] = 1 ⇔ [ℓ2, a3]=[ℓ3, a3] = 1

This implies that a3 is central, which replaces (ρ23), (ρ2), (ρ14), and (ρ1). Some generators can
be eliminated:

a2 = a
−(p+1)
1 a3 = a

−(p+2)
1 ℓ2 = ℓ1 · a−(p+3)

1

ℓ3 = ℓ−1
1 · ap+1

1 ℓ4 = a
2(p+2)
1 · ℓ−1

1

Hence the group is generated by a1, ℓ1 with the following relations

[ap+2
1 , ℓ1] = 1 [a1, ℓ

2
1] = 1

ℓ1 · a1 · ℓ−1
1 · a2p+5

1 = 1 ℓ1 · a1 · ℓ1 = ap+1
1

As a consequence a
2(p+2)(p+3)
1 = 1, and then ℓ21 · a

p+6
1 = 1. Hence, calling a := a1, ℓ := ℓ1, and

q := p+ 3 we have:

(2.1) G1 = ⟨a, ℓ | a2(q−1)q = 1, ℓ2 = a3(q−1), ℓ · a · ℓ−1 = a1−2q⟩.

Note that ℓ2, a(q−1) are central. The group fits in a short exact sequence

1 → C2q(q−1) → G1 → C2 → 1

where Cj is a cyclic group of order j. Any element of G1 admits a unique representation of the
form ℓε · am, where ε ∈ {0, 1} and m ∈ {0, 1, . . . , 2(q − 1)q − 1}:
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a2 = a2−q1 a3 = a1−q1 ℓ2 = ℓ1 · a−q1

ℓ3 = ℓ1 · a1−2q
1 ℓ4 = ℓ1 · a1−q1 e12 = a

2(q−1)
1

e14 = aq−1 e23 = aq−1

Let us compare this presentation with the one given in §1.1. In the notationm = p+2 = q−1.
The element S in §1.1 corresponds with the element a in (2.1) while T corresponds with ℓa.

2.3. Fundamental group of the complement of the Milnor fiber of a smoothing of
C2
3(p).
We are going to study a projective curve C2 ∪ C3 ∪ T∞, where C3 is a nodal cubic with node

at P ∈ P2, C2 is a smooth conic, and T∞ is a line satisfying:

• C2 ∩ C3 = {Q}, where P ̸= Q (from Bézout’s theorem (C2 · C3)Q = 6).
• T∞ is one of the tangent lines to C3 at P .

It is not hard to see that there is only such a curve up to projective transformation. Equations
can be given:

C3 : y2z = x2(x+ z)

C2 : y2 = −(x+ z)(2x+ z)

T∞ : y = x.

The other tangent line to C3 at P is denoted by T0 and its equation is y + x = 0.

Remark 2.4. Fowler showed that C2
3(p) had two distinct smoothing components (related by

complex conjugation) which seems to be in contradiction with the projective rigidity of
C2 ∪ C3 ∪ T∞. In fact, there is no such contradiction; note that as shown in Figure 11 for
the construction of the Milnor fiber we need to perform some blow-ups at one of the two points
of C2 ∩ T∞ (which are complex conjugate with the above equations!), and this fact confirms the
existence of two distinct smoothing components.

Unfortunately, the real picture in Figure 10 does not contain all the topological information
of the curve, mainly due the fact that C2 and T∞ do not intersect at real points.

C3

C2
C3 : y2z = x2(x+ z)

C2 : y2 = −(x+ z)(2x+ z)

T∞ : y = x

Figure 10. Real picture of C2 ∪ C3 ∪ T∞.

Theorem 2.5. The fundamental group of the complement of C2 ∪ C3 ∪ T∞ in P2 is isomorphic
to Z⊕ Z.
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Before giving the proof of this theorem, let us show how the plane curve curve C2 ∪C3 ∪T∞ is
related to the Milnor fibre of the QHD-smoothing of C2

3(p). This curve follows the ideas in [19]
to find the curve at infinity for C3

2(p), using conics. In [2], the author proceeds using a line
arrangement with 9 lines: the McLane arrangement and one line joining two triple points.

−1

−1

C3

C2

−(p+ 3)

T∞ E1 Ep−1 Ep

−1

Figure 11. Resolution of C2 ∪ C3 ∪ T∞ including C3
2(p).

Corollary 2.6. The Milnor fibre of the QHD-smoothing of C2
3(p) is abelian.

Proof. In Figure 11 we have depicted a (non-minimal) embedded resolution of the singularities
of C2 ∪ C3 ∪ T∞. Let π : X → P2 be that resolution. Then P2 \ (C2 ∪ C3 ∪ T∞) is isomorphic to
X \ π−1(C2 ∪ C3 ∪ T∞) and then its fundamental group is abelian.

We obtain the Milnor fibre F of the QHD-smoothing of C2
3(p) as the complement in X of all

the irreducible components of π−1(C2 ∪ C3 ∪ T∞) with the exception of the gray components in
Figure 11. Then π1(F ) is a quotient of Z2 by Proposition 2.3 and the statement follows. □

In Figure 11 one can see the dual graph of a resolution of C3 ∪ C2 ∪ T∞, with extra blow-ups
at one of the points in C2 ∩ T∞.

Actually, Theorem 2.5 can be proved using SIROCCO [11] inside Sagemath [14]. A simple
explanation on how it works can be found in [10]. The code is very simple:

R.<x,y,z>=QQ[]

F=(y^2*z-x^2*(x+z))*(y^2+(x+z)*(2*x+z))*(y-x)

C=Curve(F)

C.fundamental_group ()

We include a computer-free proof of the Theorem. The strategy is to apply birational transfor-
mations to obtain an arrangement of curves in C2 such that the complement of this arrangement
is isomorphic to P2 \ (C2∪C3∪T∞∪T0). This arrangement has real equations, and moreover the
real picture contains all the topological information. We can compute the fundamental group
using the Zariski-van Kampen method applied to the vertical projection. The first interesting
property of the curve is that all the non-transversal vertical lines are in the real picture. Not
all the real vertical lines intersect the arrangement of curves at real points, but the real part of
the intersections can be tracked. As a consequence, the real picture allows one to find the braid
monodromy of the curve, and so the fundamental group can be computed. In order to obtain
the fundamental group of P2 \ (C2 ∪ C3 ∪ T∞) an extra step is needed. We can compute the
meridian of T0 in terms on the given presentation; it is enough to kill this meridian.

Proof of Theorem 2.5. Let us blow-up the nodal point [0 : 0 : 1] of C3. Let E be the exceptional
component of the resulting ruled surface Σ1, see Figure 12.

We continue with a couple of elementary transformations which yield Σ3. We blow up E ∩Ti
and contract the strict transforms of T∞, T0, keeping the exceptional components F∞,F0. The
complement of C2 ∪C3 ∪T∞ ∪T0 in P2 is isomorphic to the complement of C2 ∪C3 ∪E ∪F∞ ∪F0

in Σ3. We can provide equations. If we blow-down the (−3)-section E we obtain the weighted
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C2

T0

E

T∞

C3

Figure 12. Combinatorial picture in Σ1 (the intersections of C2 with Ti are not real).

projective plane P2
ω, ω := (1, 1, 3), where the curves are defined by weighted homogeneous

polynomials in the variables xω, yω, zω. In fact, the birational transformation is

P2 P2
ω

[x : y : z]
[
y − x : x+ y : 8(y2z − x2(x+ z))

]
ω
.

ψ

The curves F∞,F0 have equations xω = 0, yω = 0, respectively, while C3 has equation zω = 0.
By writing down the inverse of the map ψ, a long but straightforward calculation yields that the
equation of C2 is

(2.2) z2ω − 2(x3ω + 3x2ωyω − 3xωy
2
ω − y3ω)zω + (xω + yω)

6 = 0,

with weighted degree 6. The intersection point of C2 and C3 is [1 : −1 : 0]ω and C2 has a nodal
point on F0 at [1 : 0 : 1]ω; in particular, C2 ∪ F0 has an ordinary triple point there. The curve
C2 has another double point [0 : −1 : 1]ω (in F∞).

Among the pencil of lines through [0 : 0 : 1]ω, those with equations xω = 0, yω = 0 and
xω + yω = 0 intersect C2 ∪ C3 in two points. A calculation shows that the other lines with this
property are the tangent lines to C2∪C3, with equations xω+3yω = 0 and 3xω+yω = 0, and the
tangency points have quasi-homogeneous coordinates [3 : −1 : −8]ω and [1 : −3 : −8]ω. These
lines would be the vertical tangent lines to C2 in Figure 13.

The local equation of C2 at the singular point [1 : 0 : 1]ω can be described in local coordinates
(u, v) 7→ [1 : u : v + 1]ω, and one finds the tangent cone is 0 = 21u2 − 6uv + v2. These two lines
are not real, so in the real picture one has an isolated point and can see F0 but not C2.

We can consider the affine chart C2 ≡ Σ3 \ (E ∪ F∞), or equivalently, the affine chart
(yω, zω) 7→ [1 : yω : zω]ω of of P2

ω. Figure 13 shows a real picture of this affine chart xω = 1.

F∗F− F1
+ F2

+

C2

C3

F0

Figure 13. Affine chart (yω, zω) of P2
ω. The dotted line represents real parts

of the yω-coordinates of the strict transform of the conic.
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The base point for the fundamental group is in F∗ = {yω = y∗}, with zω-coordinate a real
number z∗ ≫ 1. The geometric basis c, q1, q2 in this fibre, plus a meridian of F0 lying on the
horizontal line zω = z∗, together generate the fundamental group of

P2 \ (C2 ∪ C3 ∪ T∞ ∪ T0) ∼= Σ3 \ (C2 ∪ C3 ∪ E ∪ F∞ ∪ F0) ∼= C2 \ (C2 ∪ C3 ∪ F0).

Let y−, y
1
+, y

2
+ ∈ R such that F− = {yω = y−}, F1

+ = {yω = y1+}, and F2
+ = {yω = y2+}.

We consider geometric bases in these fibres which can be considered to have (y∗, z∗) as base
points. This is done if we take in the horizontal line zω = z∗ paths connecting (y∗, z∗) with the
base points in each vertical fiber, namely (y−, z∗), (y

1
+, z∗), and (y2+, z∗), see the upper part of

Figure 15.

yω = y∗

z∗cq1q2

yω = y−

z∗
c(q1c)

3

q
(q1c)

3

1

q2

yω = y1+

z∗c

q1

q2

yω = y2+

z∗

q1

q
q1cq

−1
1

2
q1cq

−1
1

Figure 14. Geometric bases at the fibres; superindices stand for conjugation.

The elements of the geometric bases in each vertical line (Figure 14) can be expressed in
terms of the generators in F∗. The expression of each of this element in terms of the generators
c, q1, q2 in F∗ is shown in Figure 14. These equalities are obtained by the action of the connecting
braids in the lower part of Figure 15 which defined isomorphisms of the fundamental group of
the punctured line F∗ with the fundamental group of the punctured lines F−, F−, F1

+ and F2
+.

In order to draw the connecting braids, when two points have the same real part, we put the
one with positive imaginary part to the left of the one with negative imaginary part.

The fundamental group is generated by c, q1, q2 in F∗ (Figure 14) and f (Figure 15). The
first relation is obtained by turning around yω = − 1

3 (vertical tangency) and it is q1 = q2. For
the sake of brevity, we set q := q1 = q2.

Turning around yω = −1, as the singular point is simple of type A11, then the relation is
[q, (q · c)6] = 1.

The next relation comes from turning around yω = −3. This is a again a vertical ordinary
tangency, and we obtain the equality of the second and third meridians if F−, i.e.,

q2 = (q1 · c)−3 · q1 · (q1 · c)3,

which can be expressed as [q, (q · c)3] = 1. The previous relation becomes a consequence of this
one.

Since F0 is part of the curve, the relations obtained by turning around yω = 0 involve also
the generator f together with the meridians in F2

+. We obtain:

f−1 · (q1 · c · q−1
1 ) · f = (q1 · c · q−1

1 ), i.e. [f, q · c · q−1] = 1,

and

[f, q1 · c−1 · q−1
1 · q2 · q1 · c · q−1

1 , q1] = 1 ⇐⇒ [f, q · c−1 · q · c · q−1, q] = 1 ⇐⇒ [f, q, c−1 · q · c] = 1.

Recall that this relation means that f · q · c−1 · q · c commute with the three factors.
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zω = z∗

A

B C f

y∗y− y2+y1+

−1

− 1
3−3

0

CBA

Figure 15. Paths in yω = y∗ avoiding the non transversal vertical lines and
associated braids

We are interested in the fundamental group of P2 \ (C2 ∪ C3 ∪ T∞). Let Σ̂3 be the space
obtained by blowing up; it turns out that the exceptional component is the strict transform of
T0 and that P2 \ (C2 ∪ C3 ∪ T∞) is isomorphic to the complement of C2 ∪ C3 ∪ E ∪ F∞ ∪ F0 in

Σ̂3. Considering the meridian of T0, by Proposition 2.3 this means that f · q · c−1 · q · c = 1.
Summarizing the group is generated by q, c, f with relations

[q, (q · c)3] = 1, [f, q · c · q−1] = 1, f · q · c−1 · q · c = 1.

The third relation allows one to solve for f ; inserting the value of f into the second relation, one
deduces that [q, cqc] = 1; then, applying this new relation to the first relation written out, one
sees that qc = cq. Thus, the group is abelian, isomorphic to Z⊕ Z. □

2.4. Fundamental group of the complement of the Milnor fiber of a smoothing of
C3
3(p).
In this subsection we consider the curve C2 ∪ C3, to be used for the construction of the QHD-

Milnor fiber for the family C3
3(p) [13, (8.6)]. In Figure 16 we have a resolution of the singularities

of C2 ∪ C3 with extra blowing-ups at one of the branches of the node. The QHD-Milnor fiber for
the family C3

3(p) is obtained by forgetting the last exceptional component (gray vertex).

−(p+ 3)

−1 C2C3

E0Ep+1

−1

Figure 16. Graph at infinity for C3
3(p).

Corollary 2.7. The Milnor fibre of the QHD-smoothing of C3
3(p) is abelian.



144 E. ARTAL AND J. WAHL

Proof. We work as in the proof of Corollary 2.6. The first step is to use Proposition 2.3 to prove
that the fundamental group of P2 \(C2∪C3) is abelian (in fact, isomorphic to Z). Let π : X → P2

be the (non-minimal) embedded resolution of the singularities of C2 ∪ C3 depicted in Figure 16;
we have that the fundamental group of X \ π−1(C2 ∪ C3) is abelian and we proceed as in the
proof of Corollary 2.6. □
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