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MIDDLE MULTIPLICATIVE CONVOLUTION AND

HYPERGEOMETRIC EQUATIONS

NICOLAS MARTIN

Abstract. Using a relation due to Katz linking up additive and multiplicative convolutions,
we make explicit the behaviour of some Hodge invariants by middle multiplicative convolution,

following [DS13] and [Mar21] in the additive case. Moreover, the main theorem gives a new

proof of a result of Fedorov computing the Hodge invariants of hypergeometric equations.

The starting point of this article is a work of Dettweiler and Sabbah [DS13] consisting in
making explicit the behaviour of Hodge invariants by middle additive convolution by a Kummer
module, motivated by the Katz algorithm [Kat96]. In [Mar21], we developed this work without
making the assumption of scalar monodromy at infinity assumed in the Katz algorithm and in
[DS13], and we made precise the behaviour of nearby cycle local Hodge numerical data.

There exists a tricky link between middle additive convolution with a Kummer module and
middle multiplicative convolution with a particular hypergeometric module, due to Katz [Kat96]
and detailed in Proposition 2.1. It allows us in §2 to transpose the general results of [Mar21] to
the multiplicative context, after having recalled in §1 the necessary definitions.

An application of these results is another way to prove a theorem due to Fedorov computing
the Hodge invariants of hypergeometric equations [Fed18, Th. 3] (detailed in [Fou19, Th. 2.6]),
very different but more direct, insofar as it uses the explicit behaviour of the Hodge invariants
at infinity and 0.

1. Numerical Hodge data

Let us begin by recalling the definition of local Hodge invariants introduced in [DS13, §2.2].
Let ∆ be a disc in the complex plane centered at 0 with coordinate t and (V, F •V,∇) be a
polarizable variation of Hodge structure on ∆∗ = ∆ r {0} over the field of complex numbers
(for a complete review of this notion, see [Mar18, §5.2]). We denote by M the corresponding
D∆-module minimal extension at 0.

Nearby cycles. For a ∈ (−1, 0] and λ = exp(−2iπa), the nearby cycle space at the origin
ψλ(M) is equipped with the nilpotent endomorphism N = t∂t − a and we have an induced
Hodge filtration on ψλ(M) such that NF pψλ(M) ⊂ F p−1ψλ(M). The monodromy filtration
induced by N enables us to define the spaces P`ψλ(M) of primitive vectors, equipped with a
polarizable Hodge structure. The nearby cycle local Hodge numerical data are defined by

νpλ,`(M) := hp(P`ψλ(M)) = dim grpFP`ψλ(M),

with the relation νpλ(M) := hpψλ(M) =
∑̀
≥0

∑̀
k=0

νp+kλ,` (M). We set
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νpλ,prim(M) :=
∑
`≥0

νpλ,`(M) and νpλ,coprim(M) :=
∑
`≥0

νp+`λ,` (M).

Vanishing cycles. For λ 6= 1, the vanishing cycle space at the origin is given by
φλ(M) = ψλ(M) and is equipped with N and F p as before. For λ = 1, the Hodge filtration on
φ1(M) is such that F pP`φ1(M) = N(F pP`+1ψ1(M)). Similarly to nearby cycles, the vanishing
cycle local Hodge numerical data is defined by µpλ,`(M) := hp(P`φλ(M)) = dim grpFP`φλ(M).

Now let us leave the local point of view, and let x = {x1, ..., xr} denote a set of points of
Gm = C∗, x0 = 0, D = DGm = C[t, t−1]〈∂t〉 and i the inclusion Gmrx ↪→ P1. Let (V, F •V,∇) be
a complex polarizable variation of Hodge structure on Gmrx and M be the D-module minimal
extension at points of x. Define M min to be the DP1 -module minimal extension of M at 0 and
infinity.

Degrees δp. The Deligne extension V 0 of (V,∇) on P1 is contained in M , and is endowed with
the filtration i∗F

pV ∩ V 0. We set

δp(M) = deg grpFV
0 = deg

i∗F
pV ∩ V 0

i∗F p+1V ∩ V 0
.

2. Middle multiplicative convolution with H0,γ0

Let us fix γ ∈ (0, 1] and set λ = exp(−2iπγ). The Kummer module Lλ is defined by
Lλ = D/D · (t∂t − γ) where D = DGm , and the middle additive convolution functor with
Lλ is denoted by MCλ. Similarly to the middle additive convolution, the middle multiplicative
convolution is defined by M ∗mid×N = Im[π†(M�N)→ π+(M�N)] where M,N are holonomic
D-modules on Gm, π : Gm × Gm → Gm is the product map, π+ is the direct image functor,
π† := Dπ+D is the adjoint by duality of π+, and M � N denotes the external product of M
and N . See [DS13, §1.1] for a quick review of middle convolution for holonomic modules on the
affine line.

Let us define H0,γ as the hypergeometric module D/D · (t∂t− t(t∂t−γ)), whose restriction to
Gmr{1} underlies a rank one local system with the following monodromies : 1 at 0, exp(−2iπγ)
at 1, exp(2iπγ) at ∞. The next proposition links up additive and multiplicative convolutions
and is due to Katz [Kat96, Lemma 2.13.1], and adapted here to the point of view of D-modules
(see [Mar18, Prop. 2.8.1] for further details):

Proposition 2.1. Let us denote by j : Gm ↪→ A1 the inclusion. For every holonomic D-module
M , we have the following formula for γ 6= 1 :

M ∗mid× H0,γ = j+(MCλ(j†+(M ⊗Lλ))).

Assumption 2.2. In everything that follows, we fix γ0 ∈ (0, 1) and set λ0 = exp(−2iπγ0). If
we assume that M is an irreducible regular holonomic D-module, not isomorphic to Lλ0

and
not supported on a point, then j†+(M ⊗ Lλ0

) satisfies Assumption 1.2.2(1) of [DS13] and we

can apply to it the results of [DS13] and [Mar21]. Therefore, we make this assumption in what
follows.

The following proposition gives the behaviour of vanishing cycle local Hodge numerical data
by middle convolution with H0,γ0 :
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Proposition 2.3. For all i ∈ {1, ..., r}, we have:

µpxi,λ,`(M ∗mid× H0,γ0) =

{
µpxi,λ/λ0,`

(M) if γ ∈ (0, γ0]

µp−1
xi,λ/λ0,`

(M) if γ ∈ (γ0, 1].

Proof. For i ∈ {1, ..., r}, Proposition 2.1 gives

µpxi,λ,`(M ∗mid× H0,γ0) = µpxi,λ,`(MCλ0(j†+(M ⊗Lλ0
))).

According to Assumption 2.2, we know that j†+(M ⊗ Lλ0
) satisfies Assumption 1.2.2(1) of

[DS13], then we can apply [DS13, Th. 3.1.2(2)] (the part (2) does not need the hypothesis of
scalar monodromy at infinity) and get

µpxi,λ,`(M ∗mid× H0,γ0) =

{
µpxi,λ/λ0,`

(M ⊗Lλ0
) if γ ∈ (0, γ0]

µp−1
xi,λ/λ0,`

(M ⊗Lλ0
) if γ ∈ (γ0, 1].

As Lλ0
has trivial monodromy around xi 6= 0, we have µpxi,λ/λ0,`

(M ⊗ Lλ0
) = µpxi,λ/λ0,`

(M)

and it is possible to conclude the proof. �

Concerning nearby cycle local Hodge numerical data at infinity, Theorem 1 of [Mar21] comple-
ments [DS13, Th. 3.1.2] without assuming that the monodromy at infinity is scalar. Combined
with Proposition 2.1 and [DS13, 2.2.13], we directly get the following proposition:

Proposition 2.4. We have the following data:

νp∞,λ,`(M ∗mid× H0,γ0) =



νp−1
∞,λ,`(M) if γ ∈ (0, 1− γ0)

νp∞,λ,`(M) if γ ∈ (1− γ0, 1)

νp∞,1,`+1(M) if λ = 1

νp−1

∞,λ0,`−1
(M) if λ = λ0, ` ≥ 1.

Remark 2.5. We also have an explicit but more complicated formula for νp∞,λ0,0
(M∗mid×H0,γ0),

given and proved in [Mar18, Prop. 6.4.3].

Similarly to Proposition 2.4, combining [DS13, Th. 3.1.2(2)], Proposition 2.1 and [DS13,
2.2.14], the nearby cycle local Hodge numerical data at 0 are given by the following proposition:

Proposition 2.6 ([Mar18, Prop. 6.4.5]). We have the following data:

νp0,λ,`(M ∗mid× H0,γ0) =



νp0,λ,`(M) if γ ∈ (0, γ0)

νp−1
0,λ,`(M) if γ ∈ (γ0, 1)

νp0,λ0,`+1(M) if λ = λ0

νp−1
0,1,`−1(M) if λ = 1, ` ≥ 1

hpH1(P1,DRM min) if λ = 1, ` = 0.
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Remark 2.7. Summing the nearby cycle local Hodge numerical data, we deduce an explicit
formula for Hodge numbers:

hp(M ∗mid× H0,γ0) = hp(M) + νp−1
0,1,prim(M)− νp−1

0,λ0,prim(M)

+ hpH1(P1,DRM min) +
∑

γ∈[γ0,1)

(νp−1
0,λ (M)− νp0,λ(M)).

To finish this study of the behaviour of Hodge invariants by middle multiplicative convolution
with H0,γ0 , let us make explicit the degrees δp defined in §1:

Proposition 2.8. The degrees δp are given by:

δp(M ∗mid× H0,γ0) = δp(M) +
∑

γ∈[γ0,1)

(νp0,λ(M)− νp−1
0,λ (M)) + νp−1

0,λ0,prim(M)

−
r∑
i=1

µpxi,1(M) +
∑

γ∈(0,1−γ0)

µp−1
xi,λ

(M)

 .

Proof. Applying [DS13, Prop. 2.3.2] and [DS13, 2.2.13], we have

(2.1) δp(M ⊗Lλ0
) = δp(M)− hp(M) +

∑
γ∈[γ0,1)

νp0,λ(M) +
∑

γ∈[1−γ0,1)

νp∞,λ(M)

(2.2)
∑

γ∈[γ0,1)

νp∞,λ(M ⊗Lλ0
) =

∑
γ∈[γ0,1)

νp∞,λλ0
(M) =

∑
γ∈[0,1−γ0)

νp∞,λ(M)

(2.3)
∑

γ∈(0,1−γ0)

µp−1
0,λ (M ⊗Lλ0

) =
∑

γ∈(γ0,1)

νp−1
0,λ (M)

µp0,1(M ⊗Lλ0
) = νp−1

0,1 (M ⊗Lλ0
)− νp−1

0,1,prim(M ⊗Lλ0
)(2.4)

= νp−1
0,λ0

(M)− νp−1
0,λ0,prim(M).

Summing (2.1) and (2.2), we deduce from [DS13, 2.2.2(∗∗)] :

(2.5) δp(M ⊗Lλ0
) +

∑
γ∈[γ0,1)

νp∞,λ(M ⊗Lλ0
) = δp(M) +

∑
γ∈[γ0,1)

νp0,λ(M).

According to Proposition 2.1 and Theorem 3 of [Mar21], we have

δp(M ∗mid× H0,γ0) = δp(M ⊗Lλ0
) +

∑
γ∈[γ0,1)

νp∞,λ(M ⊗Lλ0
)

−
r∑
i=0

µpxi,1(M ⊗Lλ0
) +

∑
γ∈(0,1−γ0)

µp−1
xi,λ

(M ⊗Lλ0
)

 .

and, using (2.3), (2.4) and (2.5), we get the expected formula. �
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3. Fedorov’s formula

For any α,β ∈ [0, 1)n, the hypergeometric differential operator Hyp(α,β) is defined by

Hyp(α,β) =

n∏
i=1

(t∂t − αi)− t
n∏
j=1

(t∂t − βj),

and the corresponding hypergeometric module by Hα,β := D/D ·Hyp(α,β). These D-modules
are irreducibles if and only if αi 6= βj for all i, j ∈ {1, ..., n} [Kat90, Cor. 3.2.1]. We assume in
what follows that this condition is satisfied.

The leading term of the operator is tn(1 − t)∂nt , then we have a connection on the triv-
ial holomorphic bundle of rank n on P1 r {0, 1,∞}. The three singularities are regular, and
Theorem 3.5.4 of [Kat90] shows that the corresponding local system on P1 r {0, 1,∞} is phys-
ically rigid. In other words, the hypergeometric equation can be reconstructed, up to isomor-
phism, with the knowledge of its monodromies at 0, 1 and ∞, that was already remarked by
Riemann in 1857. By [Sim90, Cor. 8.1], the restriction of Hα,β to Gmr {1} underlies a complex
polarizable variation of Hodge structure, unique up to a shift of the Hodge filtration [Del87,
Prop. 1.13(i)]. Let us make precise the monodromies of horizontal sections∗ and the implications
on the calculation of local Hodge invariants.

At ∞ : Form ∈ {1, ..., n}, we set mult(βm) = #{j ∈ {1, ..., n} | βj = βm}, `m(β) = mult(βm)−1
and λm = exp(2iπβm). The monodromy matrix at infinity is composed for each eigenvalue λm
of a unique Jordan block of size mult(βm). We deduce that dim P`ψ∞,λm(Hα,β) = 0 except for
` = `m(β) for which this quantity is equal to 1. The computation of νp∞,λm,`(Hα,β) is reduced

to finding the value of p ∈ Z for which this quantity for ` = `m(β) is non zero (and equal to 1).

At 0 : For m ∈ {1, ..., n}, we set mult(αm) = #{j ∈ {1, ..., n} | αj = αm}, `m(α) = mult(αm)−1
and µm = exp(−2iπαm). The monodromy matrix at 0 is composed for each eigenvalue µm of
a unique Jordan block of size mult(αm). We deduce that dim P`ψ0,µm(Hα,β) = 0 except for
` = `m(α) for which this quantity is equal to 1. The computation of νp0,µm,`(Hα,β) is reduced

to finding the value of p ∈ Z for which this quantity for ` = `m(α) is non zero (and equal to 1).

At 1 : Concerning the monodromy at 1, we know from [BH89, Prop. 2.8] that there are n − 1
linearly independant eigenvectors associated to the eigenvalue 1 (see also [Beu08, Th. 1.1]). That
is, the monodromy at 1 is a pseudoreflection. If we set γs ∈ (0, 1] such that γs =

∑n
k=1(βk−αk)

mod Z, we deduce that λs = exp(−2iπγs) is also an eigenvalue of the monodromy at 1, called
the special eigenvalue.

• If λs 6= 1, then the monodromy is diagonalizable. We have µ1,λs(Hα,β) = ν1,λs(Hα,β) = 1,
ν1,1(Hα,β) = n − 1 and µ1,1(Hα,β) = 0. The only thing left to be determined is the value of
p ∈ Z for which µp1,λs,0(Hα,β) is non zero (and equal to 1).

• If λs = 1, then the monodromy is a transvection. We have ν1,1(Hα,β) = n and
µ1,1(Hα,β) = 1. More precisely, µ1,1,`(Hα,β) = 0 except for ` = 0 for which this quantity
is equal to 1. The only thing left to be determined is the value of p ∈ Z for which µp1,1,0(Hα,β)

is non zero (and equal to 1).

Definition 3.1. Let us set α, β, γ ∈ [0, 1). We say that the pair (α, β) is separated by γ if
exp(2iπγ) is in the open interval (exp(2iπα), exp(2iπβ)) of the oriented circle, a property that
we denote by α → γ → β. It means that either 0 ≤ α < γ < β < 1, or 0 ≤ γ < β < α < 1, or
0 ≤ β < α < γ < 1.

∗Let us notice that Fedorov considers instead monodromies of solutions, see [Fed18, Prop. 2.1].
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Remark 3.2. It is the same notation as in the beginning of Chapter 4 of [Fed18], with the
difference that α, β and γ are not necessarily distinct (if they are not distinct, our property
α→ γ → β is not satisfied).

Definition 3.3. For α,β ∈ [0, 1)n and γ ∈ [0, 1), we set

p(α,β, γ) := #{k | ¬(αk → γ → βk)} = n−# {k | αk → γ → βk}.

Note that this quantity does not depend on the numbering of the n-tuple of pairs

((α1, β1), ..., (αn, βn)).

Remark 3.4. According to [Kat90, Th. 5.3.1], given any partitions α = α′tα′′ and β = β′tβ′′

with #α′ = #β′, there exists a decomposition

Hα,β = Hα′,β′ ∗Hα′′,β′′ = Hα′′,β′′ ∗Hα′,β′

where ∗ is the ∗-multiplicative convolution. In particular, for such partitions, the right-hand side
is an object of Db

hol(D) with cohomology in degree zero only. Furthermore, one can check that
this formula also holds for the !-multiplicative convolution, hence for the middle multiplicative
convolution. In the following, ∗ denotes any of these convolutions.

Moreover, for three-term partitions with equal corresponding size, the convolution
Hα,β ∗Hα′,β′ ∗Hα′′,β′′ is associative, as indicated in [Kat90, (5.1.7)]. As a consequence, given
any permutation σ ∈ Sn, there exists a decomposition Hα,β = Hα1,βσ(1) ∗ · · · ∗Hαn,βσ(n)

which
can be performed in a commutative and associative way.

Remark 3.5. 1) Given a fixed decomposition into convolutions of hypergeometric modules of
rank one, there exists a unique associated Hodge filtration by computing the convolutions one
after the other, if we started from the trivial Hodge filtration for rank one : F pHα,β = Hα,β for
p ≤ 0 and F pHα,β = 0 for p ≥ 1.
2) By uniqueness of the Hodge filtration on Hα,β up to a shift, we deduce that taking another
decomposition will induce a shift in the filtration.

For a ∈ R, we denote by {{a}} the representative of a mod Z in (0, 1]. We have
{{a}} = a− dae+ 1.

Theorem 3.6. Let us consider the decomposition Hα1,β1 ∗· · ·∗Hαn,βn of Hα,β into convolutions
of hypergeometric modules of rank 1. The variation of Hodge structure on Hα,β induced by this
decomposition satisfies:

(a) νp0,µm,`(Hα,β) =

{
1 if p = p(α,β, αm) and ` = `m(α)

0 otherwise

(b) νp∞,λm,`(Hα,β) =

{
1 if p = p(α,β, βm) and ` = `m(β)

0 otherwise

(c) µp1,λs,`(Hα,β) =

 1 if p = n−

⌈
n∑
k=1

{{βk − αk}}

⌉
and ` = 0

0 otherwise.



200 NICOLAS MARTIN

Proof. By induction on n ∈ N∗, that is, on the length of α and β. The theorem is satisfied for
n = 1. Let us set n ≥ 1, (α,β) = ((α0, ..., αn), (β0, ..., βn)) two (n+ 1)-tuples such that αi 6= βj
for all i, j ∈ {0, ..., n}, and m ∈ {0, ..., n}. We denote by {·} the fractional part.

Formula (b). Let us suppose that (b) is satisfied for all tuples of length n. Let us prove the
formula for α and β of length n+ 1.
(Case 1) Let us suppose that βm 6= β0. By physical rigidity and according to [DS13, 2.2.13], we
have

νp∞,λm,`(Hα,β) = νp∞,λmexp(−2iπα0),`(H{α−α0},{β−α0}),

where {α− α0} = ({α0 − α0}, {α1 − α0}, . . . , {αn − α0}). Then we have

H{α−α0},{β−α0} = H{α̂0−α0},{β̂0−α0} ∗H0,{β0−α0},

where α̂0 is the tuple α where we have removed α0, and β̂0 is the tuple β where we have removed
β0.

Applying Proposition 2.4, we get

νp∞,λmexp(−2iπα0),`(H{α−α0},{β−α0})=



νp−1
∞,λmexp(−2iπα0),`

(
H{α̂0−α0},{β̂0−α0}

)
if {βm − α0} > {β0 − α0}

νp∞,λmexp(−2iπα0),`

(
H{α̂0−α0},{β̂0−α0}

)
if {βm − α0} < {β0 − α0}.

Applying [DS13, 2.2.13] once again, we have

νp∞,λm,`(Hα,β) =

 νp∞,λm,`

(
H

α̂0,β̂0

)
if α0 → βm → β0

νp−1
∞,λm,`

(
H

α̂0,β̂0

)
otherwise.

By the induction hypothesis, the left quantity is non zero if and only if p = p(α,β, βm) and

` = `m(β) = `m(β̂0).

(Case 2) Let us suppose that βm = β0 and `0(β) ≥ 1. Applying the same reasoning as before
and using Proposition 2.4 (case λ = λ0, ` ≥ 1), we get

νp∞,λ0,`
(Hα,β) = νp−1

∞,λ0,`−1

(
H

α̂0,β̂0

)
,

non zero if and only if ` = `0(β) = `0(β̂0)+1. In this case, we have p(α,β, β0) = p(α̂0, β̂0, β0)+1
because we do not have α0 → β0 → β0.

(Case 3) Let us suppose that βm = β0 and `0(β) = 0, so we have β1 6= β0. Applying the same
reasoning as in Case 1, we get

νp∞,λ0,`
(Hα,β) =

 νp∞,λ0,`

(
H

α̂1,β̂1

)
if {β0 − α1} < {β1 − α1}

νp−1
∞,λ0,`

(
H

α̂1,β̂1

)
if {β0 − α1} > {β1 − α1}

=

 νp∞,λ0,`

(
H

α̂1,β̂1

)
if α1 → β0 → β1

νp−1
∞,λ0,`

(
H

α̂1,β̂1

)
otherwise.
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By the induction hypothesis, and as the order in which the convolutions are done does not

matter, the left quantity is non zero if and only if p = p(α,β, β0) and ` = `0(β) = `0(β̂1) = 0.

To conclude, Formula (b) is satisfied for the couple (α,β).

Formula (a). Let us suppose that (a) is satisfied for all tuples of length n. Let us prove the
formula for α and β of length n+ 1.
(Case 1) Let us suppose that αm 6= α0. According to Proposition 2.6 and [DS13, 2.2.13], and
applying the same reasoning as in Case 1 of the proof of Formula (b), we have

νp0,µm,`(Hα,β) =

 νp0,µm,`

(
H

α̂0,β̂0

)
if α0 → αm → β0

νp−1
0,µm,`

(
H

α̂0,β̂0

)
otherwise.

By the induction hypothesis, the left quantity is non zero if and only if p = p(α,β, αm) and
` = `m(α) = `m(α̂0).

(Case 2) Let us suppose that αm = α0 and `0(α) ≥ 1. Applying the same reasoning as before
and using Proposition 2.6 (case λ = 1, ` ≥ 1), we get

νp0,µ0,`
(Hα,β) = νp−1

0,µ0,`−1

(
H

α̂0,β̂0

)
,

non zero if and only if ` = `0(α) = `0(α̂0)+1. In this case, we have p(α,β, α0) = p(α̂0, β̂0, α0)+1
because we do not have α0 → α0 → β0.

(Case 3) Let us suppose that αm = α0 and `0(α) = 0, so we have α1 6= α0. Applying the same
reasoning as in Case 1, we get

νp0,µ0,`
(Hα,β) =

 νp0,µ0,`

(
H

α̂1,β̂1

)
if α1 → α0 → β1

νp−1
0,µ0,`

(
H

α̂1,β̂1

)
otherwise.

By the induction hypothesis, and as the order in which the convolutions are done does not
matter, the left quantity is non zero if and only if p = p(α,β, α0) and ` = `0(α) = `0(α̂1) = 0.

To conclude, Formula (a) is satisfied for the couple (α,β).

Formula (c). Let us suppose that Formula (c) is satisfied for all tuples of length n. Let us
prove the formula for α and β of length n+ 1. We denote by λs the special eigenvalue of Hα,β,
and by λ′s the special eigenvalue of H

α̂0,β̂0
and for i ∈ {1, ..., n} :

γi = {{βi − αi}}, γ≥i = {{
∑
k≥i(βk − αk)}} = {{

∑
k≥i γk}}

With these notations, we have γ≥0 = γs and γ≥1 = γ′s. Let us remark that for γ0, ..., γn ∈ (0, 1],
we have the following relation :

(3.1) dγ0 + · · ·+ γne =

{
dγ1 + · · ·+ γne if γ0 + γ≥1 ≤ 1

dγ1 + · · ·+ γne+ 1 if γ0 + γ≥1 > 1.

Proof. Firstly γ0 + γ≥1 = γ0 + {{
∑
k≥1 γk}} =

∑
k≥0 γk − d

∑
k≥1 γke+ 1, then

γ0 + γ≥1 ≤ 1 ⇐⇒
∑
k≥0 γk ≤ d

∑
k≥1 γke ⇐⇒ d

∑
k≥0 γke = d

∑
k≥1 γke

since γ0 > 0. Similarly, γ0 + γ≥1 > 1⇐⇒ d
∑
k≥0 γke = d

∑
k≥1 γke+ 1. �
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Now, according to Proposition 2.3 and [DS13, 2.2.14], and applying the same reasoning as in the
proof of Case 1 of Formula (b), we have

µp1,λs,`(Hα,β) =

 µp1,λ′
s,`

(
H

α̂0,β̂0

)
if γs ∈ (0, γ0]

µp−1
1,λ′

s,`

(
H

α̂0,β̂0

)
if γs ∈ (γ0, 1].

As γs = {{γ0 + γ≥1}}, the condition γs ∈ (0, γ0] is equivalent to γ0 + γ≥1 > 1. Likewise, the
condition γs ∈ (γ0, 1] is equivalent to γ0 + γ≥1 ≤ 1. By induction hypothesis, we deduce that

µp1,λs,`(Hα,β) =


1 if p = n− d

∑
k≥1 γke and γ0 + γ≥1 > 1 and ` = 0

1 if p = n− d
∑
k≥1 γke+ 1 and γ0 + γ≥1 ≤ 1 and ` = 0

0 otherwise.

=

{
1 if p = n+ 1− d

∑
k≥0 γke and ` = 0

0 otherwise.

according to (3.1). Then Formula (c) is satisfied for the couple (α,β). �

Link between Theorem 3.6 and Fedorov’s formulas. Formulas (a) and (b) of the previous
theorem corresponds to Formulas (a) and (b) of Theorem 3 in [Fed18]. However, this is not fully
obvious in the sense that Fedorov considers in his article the space of solutions of the connection
associated with the hypergeometric equation, while we consider the space of horizontal sections
of the connection (see Footnote ∗). Let us begin by transposing Fedorov’s formulas in terms of
horizontal sections with the following lemma. Note that we do not necessarily assume that the
tuples are ordered.

Lemma 3.7. Parts (a) and (b) of [Fed18, Th. 3] are equivalent to the following statement:
The hypergeometric module Hα,β is equipped with a polarizable variation of Hodge structures
verifying, up to a shift, the following identities:

(a) νp0,µm,`(Hα,β) =


1 if p = #{j | βj < αm} −#{i | αi < αm}

and ` = `m(α)

0 otherwise.

(b) νp∞,λm,`(Hα,β) =


1 if p = #{j | βj ≤ βm} −#{i | αi < βm}

and ` = `m(β)

0 otherwise.

Proof. The space of solutions and the space of horizontal sections are dual (see for example

[Pha79, Cor. 7.1.1]). If we denote by ∗ the dual, we have the relation (P`H)∗ ' N`P`(H
∗) as

Hodge structures and then

(grpFP`H)∗ ' gr−pF (P`H)∗ ' gr−pF N`P`(H
∗) ' gr−p+`F P`(H

∗).

Consequently, duality translates as the transformation (p, `) 7→ (−p + `, `). Applying this rule,
we deduce that [Fed18, Th. 3(a)] is equivalent to
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νp0,µm,`(Hα,β) =


1 if p = −(#{i | αi ≤ αm} −#{j | βj < αm}) + `m(α)

and ` = `m(α)

0 otherwise,

and this is equivalent to part (a) of the lemma.

Similarly, [Fed18, Th. 3(b)] is equivalent to

νp∞,λm,`(Hα,β) =


1 if p = −(#{i | αi < βm} −#{j | βj < βm}) + `m(β)

and ` = `m(β)

0 otherwise,

and this is equivalent to part (b) of the lemma. �

It remains to show that the formulas of the previous lemma correspond to the formulas of
Theorem 3.6, up to a shift. This is a consequence of the following combinatorial lemma, insofar
as #{k | αk < βk} only depends on α and β.

Lemma 3.8. We have the following relations:

(i) p(α,β, αm)− (#{j | βj < αm} −#{i | αi < αm}) = #{k | αk < βk}
(ii) p(α,β, βm)− (#{j | βj ≤ βm} −#{i | αi < βm}) = #{k | αk < βk}.

Proof. (i) Let us sum up in the following table the contributions of k ∈ {1, ..., n} to p(α,β, αm)
and #{j | βj < αm} −#{i | αi < αm} according to the relative positions of αk, βk and αm.

contribution of k to
relative positions p(α,β, αm) #{k | βk < αm}

−#{k | αk < αm}
αk < βk 0 ≤ αm < αk < βk < 1 1 0

0 ≤ αk = αm < βk < 1 1 0
0 ≤ αk < αm < βk < 1 0 −1
0 ≤ αk < βk < αm < 1 1 0

αk > βk 0 ≤ αm < βk < αk < 1 0 0
0 ≤ βk < αm < αk < 1 1 1
0 ≤ βk < αk = αm < 1 1 1
0 ≤ βk < αk < αm < 1 0 0

This table proves that p(α,β, αm) and #{j | βj < αm}−#{i | αi < αm} differ by #{k | αk < βk},
showing Formula (i).

(ii) Let us now sum up in the following table the contributions of the integer k to p(α,β, βm)
and #{j | βj ≤ βm} −#{i | αi < βm} according to the relative positions of αk, βk and βm.
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contribution of k to
relative positions p(α,β, βm) #{k | βk ≤ βm}

−#{k | αk < βm}
αk < βk 0 ≤ βm < αk < βk < 1 1 0

0 ≤ αk < βm < βk < 1 0 −1
0 ≤ αk < βk = βm < 1 1 0
0 ≤ αk < βk < βm < 1 1 0

αk > βk 0 ≤ βm < βk < αk < 1 0 0
0 ≤ βk = βm < αk < 1 1 1
0 ≤ βk < βm < αk < 1 1 1
0 ≤ βk < αk < βm < 1 0 0

This table proves that p(α,β, βm) and #{j | βj ≤ βm}−#{i | αi < βm} differ by #{k | αk < βk},
showing Formula (ii). �
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