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A GEOMETRIC DESCRIPTION OF THE MONODROMY OF
BRIESKORN-PHAM POLYNOMIALS

AURELIO MENEGON

ABSTRACT. We give an explicit construction of Lé&’s vanishing polyhedra for a Brieskorn-
Pham polynomial f. Then we use it to give a geometric description of the monodromy
associated to f. It allows us to write the matrix that determines the induced algebraic
monodromy. In particular, this provides another proof for the Brieskorn-Pham theorem,
which says that the characteristic polynomial associated to the monodromy of f is given by
A(t) =II(t — wiwa . ..wn), where each w; ranges over all a;-th roots of unity other than 1.

1. INTRODUCTION
Let f: C™ — C be the polynomial map given by
flzr, oo yzn) =27 4o+ 2o,

with a; € Nand a; > 2, for j =1,...,n.

Pham [8] constructed a polyhedron P in the Milnor fiber Fy of f which is a deformation
retract of Fy. Moreover, he showed that P (and hence Fy) has the homotopy type of a wedge
of p(f)-many spheres S"~!, with

w(f)= (a1 —1)(ag—1)...(ap, —1).
Afterwards, Brieskorn [2] studied the topology of the complex variety f~1(0), so now the poly-

nomials above are known as Brieskorn-Pham polynomials.
They also studied the algebraic monodromy

h* Hn_l(Ff;(C) — Hn_l(Ff;(C)

associated to the Milnor fibration of f. They showed that the characteristic roots of the linear
transformation h* are the products wiws ...w,, where each w; ranges over all the a;-th roots of
unity other than 1. So the characteristic polynomial of h* is given by

Alt) =TIt —wiws ... wy) .

Later, many other mathematicians have studied the monodromy associated to singularities.
See [3] for a survey on this subject.

In this paper, we use Lé’s construction ([4] and [5]) of the vanishing polyhedron P in F to
give a geometric description of the induced monodromy h : P — P. It allows us to explicitly
construct the matrix defined by the induced geometric monodromy h* with respect to a given
basis for H,_1(P) (compare to [7], page 75). In particular, it provides another proof for the
Brieskorn-Pham theorem.

The approach suggested by this paper could be useful to study the monodromy associated to
real analytic map-germs with an isolated critical point.

On the other hand, the explicit construction of a Lé&’s vanishing polyhedron for this family
of complex functions is a quite interesting example illustrating Lé’s construction in a concrete
case.
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There is another way of describing the geometric monodromy of certain classes of singularities,
which have recently been developed by A’Campo. In the last section of his very interesting
preprint [1] he explains the so-called téte-a-téte monodromy for Brieskorn-Pham polynomials in
three variables.

The author thanks José Luis Cisneros-Molina for encouraging him to write this article. He
also thanks the referee for his good suggestions towards the improvement of the format of this
manuscript.

2. LE’S VANISHING POLYHEDRON

In [4] D.T. Lé sketched a proof of the following theorem, whose complete proof was given
later in [5] by the author and himself.

Theorem 2.1. Let X C CV be a reduced equidimensional complex analytic space and let
S = (Sa)aca be a Whitney stratification of X. Let f : (X,z) — (C,0) be a germ of com-
plex analytic function at a point x € X. If f has an isolated singularity at x relatively to S and
if € and n are sufficiently small positive real numbers as above, then for each t € D} there exist:

(1) a polyhedron Py of real dimension dimc Xy in the Milnor fiber X;, compatible with the
Whitney stratification S, and a continuous simplicial map:

gt : 8Xt — Pt
compatible with S, such that X; is homeomorphic to the mapping cylinder of 5};
(#4) a continuous map VP, : Xy — Xo that sends P, to {0} and that restricts to a homeomor-
phism X\ P, — Xo\{0}.

In this section, we review the general lines of Lé’s construction of such a vanishing polyhedron
in the case of a complex function-germ f : (C™,0) — (C,0) with n > 2 and with isolated critical
point.

Let ¢ : (C™,0) — (C,0) be the germ of a linear form and consider the map-germ

é¢ : (C™,0) — (C?,0)

defined by ¢¢(z2) := (£(2), f(2))-

For a generic choice of ¢ the critical set of ¢y is either empty or a smooth reduced complex
curve, whose closure I' has image by ¢; a complex curve A in C? (Lemma 21 of [5]). We say
that T' is the polar curve of f relatively to £ and that A is the polar discriminant of f relatively
to L.

Then the map ¢y induces a locally trivial fibration

¢ ¢y (D, X Dy, \ A)NBe = Dy, x Dy, \ A,

where 77 and 7o are small enough real numbers, with 0 < 12 < 7, < ¢ (Proposition 22 of
[5]). The Milnor fiber f~'(t) N B, of f is homeomorphic to the set F} := ¢, '(D;) N B, (see
Theorem 2.3.1 of [6]) for t € I, \ {0}, where

Dt = ]D)’Ol X {t} .
Notice that for each t € I, \ {0} fixed, the restriction of ¢, induces a locally trivial fibration
G (B \A{ya(8), - we(0)}) NBe = Dy \ {1 (t), -,y (t)}

where
{a(t),...,yx(t)} == AN Dy.
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We can suppose that A, := (0,¢) isin Dy \{y1(¢),...,yx(t)}. Foreach j =1,...,k, let 6(y;(¢))
be a simple path in D, starting at A, and ending at y;(t). We can choose ); in such a way that
these paths are disjoint away from ;. Finally, set

k
Qi = |J 8(y; (1))
j=1

With this notation, we can now construct the Lé’s vanishing polyhedron. This is done by
induction on n.

For n = 2 we just set

Py:=071(Q)
and the lifting of a suitable vector field on D; that deformation retracts it onto Q; gives a
deformation retraction of F; onto P; (see Lemma 25 and Proposition 27 of [5]).

Actually, the constructions above can be made simultaneously for every ¢ in a simple path ~
in Dy, joining 0 and some ty € OD,,. The resulting polyhedron P, is called a collapsing cone
along 7.

Now suppose n > 2. By the induction hypothesis we have a vanishing polyhedron P/ in the
local Milnor fiber F/ of the hyperplane section

f:Cc"n{t=0} - C.

For each point y;(t) € AN D, let x;(t) be a point in the intersection of the polar curve T
with Z;l(yj (t)) Without losing generality, we can assume that z;(¢) is the only point in such
intersection. Also by the induction hypothesis, there is a collapsing cone P; for the restriction
of the map ¢; to a small neighborhood of z;(¢). The “basis” of a such cone is the polyhedron
Pj(a;) := P; N ;' (a;), where a; is a point in d(y;(t))\y;(t) close to y;(t).

Since 4; is a locally trivial fiber bundle over §(y;(t))\y;(t), we can “extend” the cone P;
until it reaches the “central” polyhedron P;. This gives a polyhedron C;. The union of all the
polyhedra C; together with P/ gives our vanishing polyhedron P;.

FIGURE 1.

3. VANISHING POLYHEDRON FOR BRIESKORN-PHAM POLYNOMIALS

In this section, we will follow the steps pointed in Section 2 above to construct a Lé’s vanishing
polyhedron for a Brieskorn-Pham polynomial

flzsmm) =200 4
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with a; € Nand a; > 2, for j =1,...,n.

3.1. The two-dimensional case. Since the construction of a Lé’s vanishing polyhedron is
made by induction on the dimension of the domain of the complex function f, we start with the
two-dimensional case. That is, we consider a Brieskorn-Pham polynomial f : C2 — C given by

flz,y) =2+,

with a,b € N and a,b > 2.
Define the linear form £(x,y) = x and consider ¢ : C*> — C? given by ¢ := (¢, f), that is

$(a,y) = (z,2° + 4.
Its critical set is the curve I' = {y = 0}, which we call the polar curve of f relatively to the
form £. We say that its image A = f(T") is the polar discriminant of f relatively to £. It is the
complex curve in C? given by

A = {(u,v) € C* u* —v =0}.
One can consider small real numbers 0 < 12 < 1; < € < 1 such that the restriction
(b\ : d)il((Dm X Dﬂ2) \ A) QBE - (Dm X Dﬁz) \A

is a topological locally trivial fibration (see Proposition 22 of [5]).

For any t € ), set

Dt = ]Dn X {t} .
If t # 0, the local Milnor fiber f=1(t) N B, of f at 0 € C? is homeomorphic to
Fy= ') ne (D, NB.

(see Theorem 2.3.1 of [6]).
Now, for any ¢t € ID,, the map ¢ induces a map

& : Ft — .Dt
which is a locally trivial fibration over D; \ (A N Dy).
Notice that )
AND;={(tew?,t)eC* 0<a<a—1},
where w, 1= exp(%). Moreover, notice that for each o = 0,...,a — 1 one has that
17,1 a 1,
(£) " ((tewg, 1)) = {(tawg,0)} .
Now, for each a =0,...,a — 1 fixed, consider the path d;  in D; given by
St (r) = (rtawl t); 0<r <1
Notice that
()~ ((rt7wg 1) = {(rtswg, (1= r")bthw) € C 0 < B <b—1).
Hence (¢;)7'(d,,) is the union of the b-many paths p, s in F} given by
Pa,p(r) = (rtéwg‘, (1-— r“)%t%wbﬁ) ;0<r<1
with 8 =0,...,b—1. Each path p, s start at the corresponding point (0, t%w{j) € (6)71((0,1)).
All the paths p, g end at the point (tvwe,0) = (€t)*1((t5wg‘,t)).
So the vanishing polyhedron P; is given by

P, = U tr(pa,s)
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where t7(pq,g) denotes the trace of the path pq g(r), with 0 <r < 1.

Following [5] we have that P; is a deformation retract of F;. It is easy to see that P; is
homeomorphic to the join of (¢;)71((0,¢)) and (¢,)~*(A N D,). The first one is a set of b-many
points and the second one is a set of a-many points. Hence the Milnor number of f is given by

u(f) = (a=1)(b—1).
3.2. The general case. Now, given n > 2, consider a Brieskorn-Pham polynomial
[l mm) =20+ 4
with a; € Nand a; > 2, for j =1,...,n.
Define the linear form £(z1,...,2,) = 2, and consider ¢ : C* — C? given by ¢ := (¢, f). Its
critical set is the polar curve
F:{zlz...zzn_l :0}’
and its image
A = {(u,v) € C* u" —v =0}.
is the polar discriminant of f relatively to /.
As before, one can consider small real numbers 0 < 75 < 17; < € < 1 such that the restriction
¢ - Cb_l((Dm x Dy, ) \ A) NBe = (Dy, x Dy) \ A
is a topological locally trivial fibration, so that for any ¢ € ID,,, the map ¢ induces a map
gt : Fy — Dy
which is a locally trivial fibration over Dy \ (A N D;), where D; :=D,, x {t} and
Fy:= ') net(D,) NB.

is homeomorphic to the local Milnor fiber of f at 0 € C™.
Notice that
AN D, = {({t"*"wi 1) € C% 0 < an < ap, — 1},
where wq,, = exp(ZX).
Let f” be the restriction of f to £7(0). That is

(215 2n1,0) == 20 + -+ 20"
By induction on n, we have a Lé’s polyhedron P/ in F} := F; N {z, = 0} such that
Pt/ = U tr(pa17.__,a”’71)

0<aj<a;—1
1<j<n=1

where each pa, .. a,_, : ([0, 1})”72 — F} is a parametrized space.
Example 3.1. For n = 3 we have

.
Pay,an (1) = (rterwgl, (1 =)

1
a

1
2tezwg?) s 0<r<1.

Now, for each point y,, := (/% wd ) in (AN Dy), with 0 < a, < a,, — 1, set
Ta, = ()7 (Yo, ) VT = (0., 0,/ wf).

Then consider the map-germ 3
gan : (Ft,.]fan) — ((Cayan)
given by the restriction of £ to F;. As in Section 2 above, we can use the induction hypothesis

to construct a collapsing cone P, of gan, for each a,, =0,...,a, — 1 fixed, so that:
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(¢) Each P, is the union of parametrized spaces

(#4) Any two of them intersect exactly at P;.
So
Pt = U tr(qgi...,(xn_l) :

Ogajgaj—l
1<j<n

Example 3.2. In the case n = 3 we have the map-germ
45043 : (Ftaxag) - (C27ga3)

given by ¢a, (21, 22, 23) := (21, 23), Where fqa, = (0,#1/3wg3). Tts critical points are the points

in F; at which
of of Of
821 622 623
det | 1 0 0 ]=0

0 0 1

Hence the relative polar curve of 57% is the curve

Loy i=FN{z =0}
and its polar discriminant is the curve
Ag, = {u® + 0% =1t}
Setting D, := Dy, x {7} for i, sufficiently small, we have that
A, N Dy = {((t —7%)Y 4102 7)€ C% 0< oy <ap —1}.

ai ?

So for each a3 =0,...,a; — 1 fixed, consider the path §¢3 in D, given by

7,01

623 (r) = (r(t — Ta3)1/a1w2‘11,7) ;0<r<1.

T,

Then (ay) (622, (r)) is the set of points (21, 22, 7) € C? such that

7,01
2P+ 22+ 7% =t and 2z =r(t— TQS)l/alwg‘f )
Since . )
Tt —TR) F 2 F TR =t S = (-T2 (1 1" ) 2 w2,
with as = 0,...,a0 — 1, it follows that ((5623)_1 (6"‘3 ) is the union of the as-many paths

T,01

1

030y (1) i= (r(t = 7903 w2), (1= )% (£ — 7%) 3202, 7) 5 0 <7 < 1.
1

Now make 7 move along the semi-line that passes through ¢ wg?, that is, consider:
Tos (k) i= (1 —K)t7 Wl ; 0<k<1.
Then the collapsing cone P,, of Zas, for each a3 =0,...,a3 — 1, is given by

Po, = U qgf,o&g ([07 1] X [07 1]) s

0<aj<ap—1
0<ap<ap—1

where ¢g? ,, is the parametrized surface in P; given by

G52 0y (ry k) = (r£70 (1 — (1= K)™) 202, (1 — )22 67 (1 — (1 — k)™) 72 w22, (1 — k)75 wl?) .
Notice that 3?2 (7, 1) = Pay,a, (1), S0 any two collapsing cones of the type Py, as above intersect
at Py.
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So we finally have that
= |J P
OSOt;gSag—l
and hence
= | ¢%a.(0,1]x0,1])
OSOcl Salfl
OSOLzSag—l
0S0{3§(I3—1
is the Lé’s vanishing polyhedron for f.
Since P/ has the homotopy type of a wedge of (a; — 1)(agz — 1)-many circles, it follows that
P, has the homotopy type of a wedge of (a; — 1)(az — 1)(as — 1)-many spheres S?. O

4. THE MONODROMY OF THE BRIESKORN-PHAM POLYNOMIAL

Consider the characteristic homeomorphism h; : F; — F; given by

hi(z1,. ., 20) = (ez’ri/alzl, e ezm/a"zn) .
Identifying a; ~ 0 for each ¢ = 1,...,n one can check that the characteristic homeomorphism
h takes each gg» ., | onto qg;‘ill 7777 a,_,+1- This gives a geometric view of the monodromy of

f (see the examples below).
Notice that the homology group H,_1(F;) is generated by (n —1)-cycles o(aq, ..., ay), where
each one of them is a sum (with signals) of 2"-many parametrized spaces ¢q7 -
Moreover, one can check that

ht(o(al,...7an)) =o(la1+1,...,0,+1)
if0<a; <a;—3foranyi=1,...,n; and that ht(a(al,...,an)) equals

@iy —241 iy, —2
(D% >0 D olar 1,y o, 1)
i1=0 =0
if ;;, =a;;, —2for j=1,...,k and o; < a; — 2 for i ¢ {i1,...,ix}. This gives a homological
view of the monodromy of f.
Next we consider the two and the three dimensional cases, so the reader can actually see this
geometric description of the monodromy of a Brieskorn-Pham polynomial.

4.1. Two-dimensional case.

Consider f(z,y) = %+ y® and let hy : F; — F}; be the characteristic homeomorphism, given
by
he(z,y) = (2™ "z, e*™/y) .
Notice that

he(Pa,s(r)) = he((rtews, (1—r*)btvwy)) = (rtawg™, (1 —r*)tow) ™)
forany 0<r<1,0<a<a—1and 0< B <b—1. So if we identify a ~ 0 and b ~ 0 we have
that
hi (Do (1)) = Pat1,p41(r) .
In particular, hy(P;) = P;.
Now observe that the homology group H;(P;) is generated by the cycles

U(Qa 6) = Pa,p — Pa,B+1 — Pa+1,8 +po¢+1,[3+1
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with 0 <a<a—2and 0 < <b—2. So we have that

hy (U(a, 5)) = Pa+1,8+1 — Pa+1,84+2 = Pa+2,8+1 + Da+2,8+2 -

‘We have some cases:

(i) f0<a<a-—3and 0 < <b— 3 then one clearly has

ht(U(a,ﬁ)) :O'(O(—f—l,/@-i-l)
(i) f0<a<a—3and 8 =0—2 then

hy (0(06 b— 2)) = —Pa+1,0 T Pa+1,b—1 + Pa+2,0 — Pa+2,b—1
= —o(la+1,0)—oc(a+1,1)—---—o(a+1,b—1).

(#i7) Analogously, if « =a —2 and 0 < § < b — 3 we have that
hi(o(a—2,8)) =—0(0,84+1)—0o(1,8+1)—--—c(a—1,8+1).

(iv) f a =a—2and S =0b—2 then

ht (a(a —-2,b— 2)) = P0,0 —Pob—1 — Pa—1,0 t Pa—1,b—1

a— b— P
Zz’:@z Zj:?) o (i, j)-
So we have showed that

ola+1,64+1) f0<a<a—-3and0<B<b-3
b—2 N
—> _qso(la+1, f0<a<a—3and f=b0-—2
(ol ) = 3 2oy 7\t ’
fzizzoz(zz,ﬂJrl) fa=a—2and0<3<b-3
Yo 2j—o(i,j) fa=a—2and f=0-2
Notice that since Hq(P;) has a finite basis, then h} has finite order. So, by a theorem from
Linear Algebra, we know that the minimal polynomial of h; is a product of distinct cyclotomic

polynomials. In particular, the roots of the characteristic polynomial of h; are products of roots
of the unity whw}.

Example 4.1. Consider f(z,y) = 2° + y>. Then a = b = 3 and we have the following basis for
Hl(Pt)Z
So the matrix of the homomorphism hj : Hy(FP;) — Hi(FP;) in the basis B is given by:

0 0 0 1
0 -1 1
-1 0 1
-1 -1 1

[hi15 =

—_ o O

A simple calculation shows that the characteristic polynomial is
p(A) = (A=1)(\*+1).
Example 4.2. Consider f(z,y) = 2® + y* and consider the following basis for Hy(P;):
B ={0(0,0),0(0,1),0(0,2),0(1,0),0(1,1),0(1,2)}.
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So the matrix of the homomorphism h} : Hy(P;) — H;(FP;) in the basis B is given by:

00 0 0 0 1
00 0 -1 0 1
mp— |00 0 0 1
B~ o 0 -1 0 0 1
10 -1 -1 0 1
01 -1 0 -1 1

4.2. Three-dimensional case. Consider
f(z1,20,23) = 27" 4+ 252 + 25° .
The characteristic homeomorphism h; : F; — F; is given by
he(z1,22,23) = (62”/“121, e2milaz 5, 62’”/“323) )
So if we identify a; ~ 0, ¢ = 1,2, 3, we have that

ht (qgf,ag (T7 k)) - qgfi% a2+1(r7 k) )

for any (r, k) € [0,1] x [0, 1]. In particular, he(P;) = P;.
Now observe that the homology group Hy(P;) is generated by the 2-cycles given by

S (o %: as asz+1
0'(041, 2, 043) = qaf,ag - qal-i-l,ozz - q(xl,az-‘rl qu’O&
as az+1 az+1 az+1
+ q&1+1702+1 + q0t1+17(¥2 + thl,(l2+1 - qOé1+1 az+1
with 0 < a; <a; —2fori=1,2,3.
Then some calculations as before give that h, (a(al, o, ag)) equals to:

ol + 1,2+ 1,5+ 1) if0<o;<a;—3,fort=1,2,3

—2?1020(2 as +1,a3+1) ifar=a1 -2, 0<as<ay—3and 0< a3 <az—3
72?2020(a1+1,j,a3+1) if0<a;<a;—3, as=as—2and 0< a3z <az—3
*Zk 0 0(a1+1 as + 1,k) f0<a;<a;—3,0<ay<as—3and ag = a3z — 2
ko 22] 0, a(z Jyas+1) faor=a1—2, as=as—2and 0< a3 <az3—3
Sito 2Zk o U(z,ag—i—Lk) ifar=a1 -2, 0<ay<as—3and a3 = ag — 2
Zaz 2223020(a1+1j,k‘) if0<o;<a;—3, ap =as —2and oz = as — 2

> 22‘12 2223020(1 g, k) ifag=a; —2, ap =as—2and az = ag — 2

Example 4.3. Consider f(z,y) = 27 + 23 + 23 and consider the following basis for Hy(P;):
B = {0-(07 07 0)’ 0.(07 07 1)’ 0.(07 1’ 0)7 0(07 1’ 1)} -

So the matrix of the homomorphism h; : Hy(FP;) — H2(FP;) in the basis B is given by:

0 00 -1
a5 |0 01 <1
hls=10 1 0 21

-1 1 1 -1
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