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HORO-FLAT SURFACES ALONG CUSPIDAL EDGES IN THE

HYPERBOLIC SPACE

SHYUICHI IZUMIYA, MARIA CARMEN ROMERO-FUSTER, KENTARO SAJI,

AND MASATOMO TAKAHASHI

Abstract. There are two important classes of surfaces in the hyperbolic space. One of class

consists of extrinsic flat surfaces, which is an analogous notion to developable surfaces in

the Euclidean space. Another class consists of horo-flat surfaces, which are given by one-
parameter families of horocycles. We use the Legendrian dualities between hyperbolic space,

de Sitter space and the lightcone in the Lorentz-Minkowski 4-space in order to study the
geometry of flat surfaces defined along the singular set of a cuspidal edge in the hyperbolic

space. Such flat surfaces can be considered as flat approximations of the cuspidal edge. We

investigate the geometrical properties of a cuspidal edge in terms of the special properties of
its flat approximations.

1. Introduction

The tangent plane at a point of a regular surface is a flat approximation of the surface at a
point, which is the basic idea to define the curvatures of the surface at the point. In this sense,
the curvature at a point measures how far or near is the shape of the surface from a plane at the
given point. On the other hand, the normal plane of a surface at a point also provides important
information of the surface, for instance, the notion of normal section plays an important role in
surface theory. One of the possible generalizations of this viewpoint consists in considering flat
surfaces which are tangent or normal to the surface along a given curve. In [12, 18], osculating
(and normal) flat surfaces along a curve on a surface in the Euclidean space are investigated,
and with the help of these notions, the geometrical behaviour of a curve lying on a given surface
was studied in [11,16].

On the other hand, several articles on the differential geometry of surfaces with singularities
have appeared during the two last decades [4, 7–14, 21, 25, 26, 29–34, 36]. An important class of
singular surfaces is provided by the wave fronts, on which a smooth unit normal vector field of
the surface even at a singular point exists. This means that a tangent and thus normal planes
can be defined at any point of a wave front. One of the simplest and generic wave fronts is a
cuspidal edge, whose set of singular points is a regular space curve. In [23], osculating and normal
flat surfaces along the singular points of a cuspidal edge in the Euclidean space are defined and
investigated.

In the present paper we analyze the geometry of cuspidal edges in the hyperbolic space. We
point out that in the hyperbolic 3-space there exist two notions of flatness of surfaces [19, 22]
other than that of flat Gaussian curvature surfaces. We shall consider extrinsic flat surfaces and
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horospherical flat surfaces. The notion of extrinsic flat surfaces is a direct analogy to that of flat
surfaces in the Euclidean space. However, the notion of horospherical flat surfaces has completely
different properties [22]. It is a one-parameter family of horocycles, namely, a surface swept by
a horocycle. We call them horocyclic surfaces. We call each horocycle a generating horocycle.
It is known that a horospherical flat surface is (at least locally) parametrized as a horocyclic
surface [22, Theorem 4.4]. We introduce osculating and normal horospherical flat surfaces along
a cuspidal edge and we call them flat approximations. The main purpose of this paper is to
investigate the geometrical properties of a cuspidal edge in terms of the special properties of its
flat approximations. We use in §2 the Legendrian duality theorem obtained in [15] in order to
define the flat wave fronts as well as some invariants of cuspidal edges in the hyperbolic space.
Moreover, certain families of functions of the cuspidal edge are introduced in §2 as the main tool
in this paper. In §3, we quickly review the general theory of horocyclic surfaces given in [22].
The basic properties of the above families of functions are investigated in §4 and §5. In §6.3 we
analyze special cuspidal edges depending on special properties of flat approximations. Finally,
in §7 we make a remark on the global properties of a curve in the hyperbolic space from the
view point of the Legendrian duality.

We shall assume throughout the whole paper that all the maps and manifolds are of class C∞

unless the contrary is explicitly stated.

2. Flat fronts in the hyperbolic space

The hyperbolic space is realized as a spacelike pseudo-hypersphere with an imaginary radius in
the Lorentz-Minkowski 4-space. The first author obtained in [15] a general theory on Legendrian
dualities for pseudo-spheres in the Lorentz-Minkowski space leading to a commutative diagram
between certain contact manifolds defined by the dual relations. Such dualities have proven to
be useful in the study of the differential geometry of submanifolds of the pseudo-spheres and the
results obtained have been described in several papers [2, 5, 17,22,24]. See also [6, 27,28].

We observe that the flatness of a surface contained in a three dimensional pseudo-sphere is
determined by the degeneration of the dual surface. By taking this fact into account, we investi-
gate in the present paper the flat approximations of cuspidal edges contained in the hyperbolic
3-space.

Consider the Lorentz-Minkowski 4-space R4
1 = (R4, 〈 , 〉) with the pseudo-inner product

〈 , 〉 = (−+++) and the following subspaces

H3 = {v ∈ R4
1 | 〈v,v〉 = −1}, S3

1 = {v ∈ R4
1 | 〈v,v〉 = 1}, LC∗ = {v ∈ R4

1 | 〈v,v〉 = 0}

that we call respectively, the hyperbolic 3-space, the de Sitter 3-space and the lightcone. We take
now the submanifolds,

∆1 = {(v,w) ∈ H3 × S3
1 | 〈v,w〉 = 0},

∆2 = {(v,w) ∈ H3 × LC∗ | 〈v,w〉 = −1},
together with their corresponding canonical projections

π11 : ∆1 → H3, π12 : ∆1 → S3
1 , π21 : ∆2 → H3, π22 : ∆2 → LC∗.

We can consider the 1-forms 〈dv,w〉 and 〈v, dw〉 on R4
1 × R4

1, given by

〈dv,w〉 = −w0dv0 + w1dv1 + w2dv2 + w3dv3, 〈v, dw〉 = −v0dw0 + v1dw1 + v2dw2 + v3dw3,

for v = (v0, v1, v2, v3), w = (w0, w1, w2, w3) ∈ R4
1. Clearly, the restrictions

θi1 = 〈dv,w〉 |∆i
, θi2 = 〈v, dw〉 |∆i

(i = 1, 2)
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determine the same hyperplane field over ∆i. Moreover, ∆i is a contact manifold with the
contact form θi1(= θi2), and πi1, πi2 are Legendrian fibrations [15, Theorem 2.2]. There is a
contact diffeomorphism Φ12 : ∆1 → ∆2, given by Φ12(v,w) = (v,v ±w) [15, page 330].

For a non-zero vector v ∈ R4
1 and a real number c, we define a hyperplane with pseudo normal

v by

HP (v, c) = {x ∈ R4
1 | 〈x,v〉 = c }.

We say that HP (v, c) is a spacelike, a timelike or a lightlike hyperplane according v satisfies that
〈v,v〉 < 0, 〈v,v〉 > 0 or 〈v,v〉 = 0 respectively. We then have three kinds of totally umbilical
surfaces in H3, given by the intersection of H3 with the different hyperplanes of R4

1: A surface
H3 ∩HP (v, c) is said to be a sphere, an equidistant surface or a horosphere provided HP (v, c)
is a spacelike, a timelike or a lightlike hyperplane respectively. Moreover, an equidistant surface
H3 ∩HP (v, 0) is called a hyperbolic plane.

Let U ⊂ R2 be an open subset. We say that two maps f : U → H3 and g : U → S3
1 are

∆1-dual (one to each other) if the map (f, g) : U → ∆1 is isotropic [15]. Then a map f : U → H3

is said to be a frontal if it has a ∆1-dual g : U → S3
1 . Moreover, we say that f : U → H3 is

a front provided it has a ∆1-dual g : U → S3
1 , such that (f, g) : U → ∆1 is an immersion.

Analogous concepts for the ∆2-duality can be introduced too.
A map f : U → H3 is said to be flat (or more precisely, extrinsically flat) if its ∆1-dual

g : U → S3
1 satisfies that rank dgp ≤ 1 for any p ∈ U . On the other hand, f : U → H3 is

said to be horospherically flat (or horo-flat) provided its ∆2-dual, g : U → LC∗, satisfies that
rank dgp ≤ 1 for any p ∈ U .

Let M3 be a 3-dimensional manifold. A singular point p of the map-germ f : (U, p)→M3 is
a cuspidal edge if f is A-equivalent to the germ (u1, u2) 7→ (u1, u

2
2, u

3
2) at 0. If a singular point

p of f : (U, p) → M3 is a cuspidal edge, then we also say that the germ f is a cuspidal edge.
Here we recall that two map-germs f, g : (R2, 0)→ (R3, 0) are A-equivalent provided there exist
diffeomorphism germs φ : (R2, 0)→ (R2, 0) and Φ : (R3, 0)→ (R3, 0) such that Φ ◦ f ◦ φ−1 = g.

It is well-known that a cuspidal edge f : (U, p)→ H3 is a front, namely, there exists a ∆1 dual
g : (U, p) → S3

1 of f such that (f, g) is an immersion (see [1, 25], for example). Since both, the
singular set S(f) of f and its image f(S(f)), are regular curves, we can take a local coordinate
system (u1, u2) centered at p on U such that

S(f) = {(u1, u2)|u2 = 0}, | 〈fu1(u1, 0), fu1(u1, 0)〉 | = 1, and det(fu1 , fu2u2 , g, f) > 0.

We set u1 = u and γ(u) = f(u, 0) and define vector fields along γ as follows:

(2.1)

t(u) = fu(u, 0),
ν(u) = g(u, 0),
b(u) = γ(u) ∧ t(u) ∧ ν(u),
lεν(u) = γ(u) + εν(u),
lεb(u) = γ(u) + εb(u),

where ε = ±1. Here, for any x1,x2,x3 ∈ R4
1, we define a vector x1 ∧ x2 ∧ x3 by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣
−e0 e1 e2 e3

x1
0 x1

1 x1
2 x1

3

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1 x3
2 x3

3

∣∣∣∣∣∣∣∣ ,
where {e0, e1, e2, e3} is the canonical basis of R4

1 and xi = (xi0, x
i
1, x

i
2, x

i
3). Then {γ, t,ν, b} is a

pseudo-orthonormal frame satisfying det(γ, t,ν, b) = 1, and {γ, t, lεν , b}, {γ, t, l
ε
b,ν} are moving
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frames along γ. We then have the following Frenet-Serret type formulae:

(2.2)


γ′

t′

ν′

b′

 =


0 1 0 0
1 0 κhν κhb
0 −κhν 0 κht
0 −κhb −κht 0



γ
t
ν
b

,

(2.3)


γ′

t′

(lεν)′

b′

 =


0 1 0 0
hεν 0 εκhν κhb
0 hεν 0 εκht
εκht −κhb −εκht 0



γ
t
lεν
b

,
and

(2.4)


γ′

t′

(lεb)
′

ν′

 =


0 1 0 0
hεb 0 εκhb κhν
0 hεb 0 −εκht
−εκht −κhν εκht 0



γ
t
lεb
ν

,
where

(2.5)

κhν = 〈γ′′,ν〉 ,
κhb = −det(γ,γ′,γ′′,ν),
κht = det(γ,γ′,ν,ν′),
hεν = 1− εκhν ,
hεb = 1− εκhb .

Here, we call κhν the normal curvature, κhb the geodesic curvature, κht the cuspidal torsion, hεν
the horospherical normal curvature, hεb the horospherical geodesic curvature of the cuspidal edge
respectively. Since b = γ∧t∧ν, the horospherical geodesic curvature corresponds to the singular
curvature [34].

We denote I = U ∩ S(f) and introduce the following functions on H3 × I:

(2.6)
Hε
lν(x, u) = 〈x, lεν(u)〉+ 1,

Hε
lb(x, u) = 〈x, lεb(u)〉+ 1.

One can also consider Hν(x, u) = 〈x,ν(u)〉 and Hb(x, u) = 〈x, b(u)〉. Considering these func-
tions is analogous notion in the Euclidean space [23]. See Appendix A for these cases.

We can take x as a parameter and regard these functions as parameter families of functions
of u, then we can look at their corresponding discriminant set.

Let g : (R, 0)→ (R, 0) be a function. For a manifold N and p ∈ N , a function

G : (N × R, (p, 0))→ (R, 0)

is called an unfolding of g if G(p, u) = g(u) holds. In this setting, we regard G as a parameter
family of a function g. We assume that g′(0) = 0 and define the set ΣG and the discriminant
set DG of G as

ΣG = {(q, u) ∈ N × R | G(q, u) = Gu(q, u) = 0},
DG = {q ∈ N | there exists u ∈ R such that G(q, u) = Gu(q, u) = 0}.

If the map (G,Gu) is submersion at (p, 0), then ΣG is a manifold. By definition, the discriminant
set is the envelope of the family {q ∈ N |G(q, u) = 0}u∈R (see [3, Section 7] or [21, Section 5] for
the general theory of unfoldings and their discriminant sets).

Now apply (N, p) = (H3, p) for p ∈ H3 and G = Hε
lν , H

ε
lb. Since lεν and lεb are lightlike,

the discriminant sets DHεlν and DHεlb are the envelopes of families of horospheres. For a fixed
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u, {x ∈ H3(−1) | Hε
lν(x, u) = 0} are two horospheres tangent to the cuspidal edge at γ(u)

and {x ∈ H3(−1) | Hε
lb(x, u) = 0} are two horospheres normal to the cuspidal edge at γ(u),

respectively. We investigate these functions and discriminant sets in Sections 4 and 5.
In what follows, we shall use the following abbreviation:

κν = κhν , κb = κhb , κt = κht .

3. Horocyclic surfaces

In this section, we give a quick review of general treatment of horocyclic surfaces. See [22] for
detail. Let g : I → H3(−1) be a regular curve. Since H3(−1) is a Riemannian manifold, we can
reparametrize g by the arc-length. Hence, we may assume that g(s) is a unit speed curve. Then
the hyperbolic curvature κh and the hyperbolic torsion τh is defined by κh(s) = |g′′(s) − g(s)|
and

τh(s) = −det(g(s), g′(s), g′′(s), g′′′(s))

(κh(s))2
,

where |v| =
√
| 〈v,v〉 | for v ∈ R4

1. It can be shown that the curve g(s) satisfies the condition
κh(s) ≡ 0 if and only if there exists a lightlike vector c such that g(s)− c is a geodesic, where ≡
stands for the equality holds identically. Such a curve is called an equidistant curve. Moreover
g is called a horocycle if κh(s) ≡ 1 and τh(s) ≡ 0. Let {γ,a1,a2,a3} be a pseudo-orthonormal
basis of R4

1 which satisfies 〈γ,γ〉 = −1 and 〈ai,ai〉 = 1 (i = 1, 2, 3). Setting

g(s) = γ + sa1 +
s2

2
(γ + a2),

we see that κh(s) ≡ 1 and τh(s) ≡ 0. Thus s 7→ g(s) is a horocycle. Furthermore, let
{γ(u), a1(u), a2(u), a3(u)} be a pseudo-orthonormal frame on an open interval I which satisfies
〈γ(u),γ(u)〉 = −1 and 〈ai(u),ai(u)〉 = 1 (i = 1, 2, 3). Then the surface

(3.1) F : (u, s) 7→ γ(u) + sa1(u) +
s2

2
(γ(u) + a2(u))

is a one-parameter family of horocycles, namely, a horocyclic surface. We define fundamental
invariants of horocyclic surfaces. Since a horocyclic surface (3.1) is determined by the frame
{γ(u),a1(u),a2(u),a3(u)}, the six functions c1(u), . . . , c6(u) is defined by the following Frenet-
Serre type equations:

(3.2)


γ′(u)
a′1(u)
a′2(u)
a′3(u)

 =


0 c1(u) c2(u) c3(u)

c1(u) 0 c4(u) c5(u)
c2(u) −c4(u) 0 c6(u)
c3(u) −c5(u) −c6(u) 0



γ(u)
a1(u)
a2(u)
a3(u)

 .

Let α be a function of u, and set F̄ (u, s) = F (u, s − α(u)). Then the images F̄ (R × I) and
F (R× I) coincide. We set c̄1, . . . , c̄6 be the invariants defined by (3.2) of F̄ (u, s). Then we have
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the equation

(3.3)



c̄1(u) = c1(u) +
α(u)2

2
(c4(u)− c1(u)) + α(u)c2(u) + α′(u),

c̄2(u) = c2(u) + α(u)(c4(u)− c1(u)),

c̄3(u) =

(
1 +

α(u)2

2

)
c3(u) + α(u)c5(u) +

α(u)2

2
c6(u),

c̄4(u) = c4(u) +
α(u)2

2
(c4(u)− c1(u)) + α(u)c2(u) + α′(u),

c̄5(u) = c5(u) + α(u)(c3(u) + c6(u)),

c̄6(u) =

(
1− α(u)2

2

)
c6(u)− α(u)c5(u)− α(u)2

2
c3(u).

Then we see that c̄1(u)− c̄4(u) = c1(u)− c4(u) and

(3.4) c̄1(u)− c̄4(u) = c̄2(u) = 0 if and only if c1(u)− c4(u) = c2(u) = 0.

Furthermore, the following proposition holds (see [22, Proposition 5.3]).

Proposition 3.1. The horocyclic surface F is horo-flat if and only if c1(u)− c4(u) = c2(u) = 0
for any u ∈ I.

4. Osculating horo-flat surfaces

In this section, we construct a parametrization of the discriminant set of Hε
lν .

Let f : (U, p)→ H3 be a cuspidal edge. As in Section 2, we assume I = S(f)∩U = {(u, 0)}∩U
and set γ(u) = f(u, 0). Then we have vector fields along γ as in (2.1). We consider invariants
defined in (2.5). We assume (κt, h

ε
ν)(u) 6= (0, 0) for any u ∈ I unless otherwise stated.

4.1. The discriminant set of Hε
lν . By differentiating (2.3), we have

(4.1)
(lεν)′ = hενt+ εκtb,
(lεν)′′ = hενγ + ε(−κbκt − κ′ν)t+ (κν − εκ2

ν + εκ2
t )ν + (κb − εκνκb + εκ′t)b,

(lεν)′′′ = ε(−κbκt − 2κ′ν)γ
+
(
1− κ2

b − εκtκ′b − 2εκbκ
′
t − εκ′′ν + ε(−1 + κ2

b + κ2
t )κν − κ2

ν + εκ3
ν

)
t

+(−κbκt + κ′ν − 3εκtκ
′
t − 3εκ′νκν)ν

+
(
− εκ2

bκt − εκ3
t − 2εκbκ

′
ν + κ′b + εκ′′t + (κt − εκ′b)κν − εκtκ2

ν

)
b.

Since {γ, t,ν, b} is a basis of R4
1, we can set x = xγγ + xtt+ xνν + xbb. Then Hε

lν(x, u) = 0
if and only if xγ = εxν + 1. Moreover, Hε

lν(x, u) = (Hε
lν)u(x, u) = 0 if and only if the equalities

xγ = εxν + 1, xt = −εκts, xb = hενs

hold for some s ∈ R, under the assumption (κt, h
ε
ν) 6= (0, 0). Since x ∈ H3, we have that

xν = εs2(κ2
t + (hεν)2)/2. Thus Hε

lν(x, u) = (Hε
lν)u(x, u) = 0 if and only if

x =

(
s2

2
(κ2
t + (hεν)2) + 1

)
γ − εκtst+

εs2

2
(κ2
t + (hεν)2)ν + hενsb

for some s ∈ R. Thus DHεlν is parameterized by

(u, s) 7→ x = γ +
(
− εκtt+ hενb

)
s+

s2

2

(
κ2
t + (hεν)2

)
lεν .

We set

Dε
l =
−εκtt+ hενb√
κ2
t + (hεν)2

,
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and call it the normalized b-Darboux vector field. By applying a parameter change

s̃ = s
√
κ2
t + (hεν)2,

we obtain the following parameterization of DHεlν

(u, s) 7→ x = γ +Dε
l s+

s2

2
lεν .

Since |Dε
l | = 1, for a fixed u, s 7→ γ + Dε

l s + s2lεν/2 is a horocycle, see §3. We also see that

{γ, Dε
l , εν, (l

ε
ν)′/|(lεν)′|} is a pseudo-orthonormal frame of R4

1. Following §3, we set

{γ,a1,a2,a3} = {γ, Dε
l , εν, (l

ε
ν)′/|(lεν)′|},

and

(4.2) Flν(u, s) = F εlν(u, s) = γ + a1s+
s2

2
(γ + a2).

By definition, Flν is a ∆2-dual of lεν . An example of the osculating horo-flat surface Flν of

(4.3) f(u, v) =
(
f1(u, v), f2(u, v), f3(u, v),

√
f1(u, v)2 + f2(u, v)2 + f3(u, v)2 − 1

)
,

where f1(u, v) = 3 + u, f2(u, v) = u2/2 + v2/2, f3(u, v) = u2/2 + uv2/2 + v3/2 near (0, 0) is
provided by Figure 1. We can now define invariants cν,1, . . . , cν,6 as in (3.2), namely,

Figure 1. Cuspidal edge, Flν and the both surfaces together

(4.4)


γ′

a′1
a′2
a′3

 =


0 cν,1 cν,2 cν,3
cν,1 0 cν,4 cν,5
cν,2 −cν,4 0 cν,6
cν,3 −cν,5 −cν,6 0



γ
a1

a2

a3

.
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It is not difficult to see that

(4.5)

cν,1 =
−εκt√

κ2
t + (hεν)2

,

cν,2 = 0,

cν,3 =
hεν√

κ2
t + (hεν)2

,

cν,4 = cν,1 =
−εκt√

κ2
t + (hεν)2

,

cν,5 =
δho

κ2
t + (hεν)2

,

cν,6 =
−εκν + κ2

ν + κ2
t√

κ2
t + (hεν)2

,

cν,3 + cν,6 =
√
κ2
t + (hεν)2,

where we set

δho = −κb
(
(hεν)2 + κ2

t

)
+ εκt(h

ε
ν)′ − εhενκ′t.

By the condition (κt, h
ε
ν) 6= (0, 0), we have cν,3 + cν,6 6= 0. The invariant cν,5 corresponds to the

invariant δ of the Euclidean case (see [18, 23]). Note that if (κt, h
ε
ν) ≡ (0, 0), then by (2.3), it

holds that (lεν)′ ≡ 0. This implies that Flν is a horosphere.
By (4.4) and (4.5), we see

F ′lν = γ′ + a′1s+
s2

2
(γ′ + a′2)

= cν,1sγ + cν,1a1 + cν,1sa2 +

(
cν,3 + cν,5s+

s2

2
(cν,3 + cν,6)

)
a3(4.6)

(Flν)s = sγ + a1 + sa2,(4.7)

where ′ = ∂/∂t. We set

(4.8) λ = (cν,3 + cν,6)s2 + 2cν,5s+ 2cν,3

and

(4.9) η = ∂u− cν,1∂s,

then we see S(Flν) = {(u, s) ∈ I×R |λ(u, s) = 0} by (4.6) and (4.7). We also see ker dFlν = 〈η〉R
on S(Flν) holds. By (4.6), (4.7) and (4.5),

νl = a2 − sa1 −
s2

2
(γ + a2) ∈ S3

1

is a ∆1-dual of Flν , and Flν + νl = γ + a2 is a ∆2-dual of Flν . Since the ∆2-dual of Flν
degenerates to a curve, Flν is a horo-flat surface. On the other hand, since cν,1− cν,4 ≡ cν,2 ≡ 0,
we also see that Flν is a horo-flat surface by Proposition 3.1. It follows that each of Flν is
a horo-flat surface tangent to the cuspidal edge at any γ(u), so that we call it an osculating
horo-flat surface (along the cuspidal edge).

4.2. Singularities of osculating horo-flat surface. We consider singularities of osculating
horo-flat surface Flν . A singular point p of the map-germ f : (U, p)→ (R3, 0) is a swallowtail if
f is A-equivalent to (u, v) 7→ (u, 4v3 + 2uv, 3v4 + uv2) at 0. A singular point p of f is a cuspidal
lip (respectively, a cuspidal beak) if f is A-equivalent to (u, v) 7→ (u, 2v3 + σu2v, 3v4 + σu2v2)
at 0 with σ = +1 (respectively, σ = −1). A singular point p of f is a cuspidal cross cap if f is
A-equivalent to (u, v) 7→ (u, v2, uv3) at 0.
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Since νl : U →∈ S3
1 , the map (Flν ,νl) : U → ∆1 is an immersion if and only if

(4.10) det(F ′lν ,∇Fη νl,νl, Flν)|S(Flν) 6= 0,

where η is given by (4.9), and ∇Fη be the canonical covariant derivative by η along F induced

from the Levi-Civita connection on H3. Since

∇Fη νl = α0γ + α1a1 + α2a2 + (−cν,6 + scν,5 + (s2/2)(cν,3 + cν,6))a3

(α0, α1, α2 are some functions), the left hand side of (4.10) is cν,1(cν,3 + cν,6 − cν,1λ). Thus by
the assumption cν,3 + cν,6 6= 0, the condition (4.10) is equivalent to cν,1(u) 6= 0. Let Q be the
discriminant of λ = (cν,3 + cν,6)s2 + 2cν,5s+ 2cν,3 (in (4.8)) regarding a quadratic equation of s:

Q(u) = cν,5(u)2 − 2cν,3(u)(cν,3(u) + cν,6(u)) = cν,5(u)2 − 2hεν(u).

If Q < 0, then there is no singular point. If Q(u0) = 0, we set s0 = −cν,5(u0)/(cν,3(u0)+cν,6(u0)).
Then (u0, s0) is a singular point of Flν .

Proposition 4.1. Under the above notation, we have the following.
(I) If Q(u0) = 0, the singular point (u0, s0) of Flν is a cuspidal edge if and only if

cν,1((c′ν,3 + c′ν,6)s2 + 2c′ν,5s+ 2c′ν,3) 6= 0

at u0. Moreover, there are no swallowtails. The singular point (u0, s0) is a cuspidal lip if and
only if cν,1 6= 0, (c′ν,3 + c′ν,6)s2 + 2c′ν,5s+ 2c′ν,3 = 0, and

(4.11) det

(
(c′′ν,3 + c′′ν,6)s2 + 2c′′ν,5s+ 2c′′ν,3 2(c′ν,3 + c′ν,6)s+ 2c′ν,5

2(c′ν,3 + c′ν,6)s+ 2c′ν,5 2(cν,3 + cν,6)

)
> 0

at (u0, s0). The singular point (u0, s0) is a cuspidal beak if and only if cν,1 6= 0,

(c′ν,3 + c′ν,6)s2 + 2c′ν,5s+ 2c′ν,3 = 0,

the left hand side of the determinant (4.11) is negative, and

(4.12) s2(c′′ν,3 + c′′ν,6)+2sc′′ν,5 + c′′ν,3−2c′ν,1(s(cν,3 + cν,6)+ cν,5)

− 4cν,1(s(c′ν,3 + c′ν,6) + c′ν,5) + 2c2ν,1(cν,3 + cν,6) 6= 0

at (u0, s0). The singular point (u0, s0) is a cuspidal cross cap if and only if cν,1 = 0 and
c′ν,1((c′ν,3 + c′ν,6)s2 + 2c′ν,5s+ 2c′ν,3) 6= 0 at u0.

(II) If Q(u) > 0, let s be the solution of λ = 0, namely,

(4.13) s =
−cν,5 ±

√
c2ν,5 − 2cν,3(cν,3 + cν,6)

cν,3 + cν,6
.

Then (u, s) is a singular point. The singular point is a cuspidal edge if and only if cν,1 6= 0 and

(4.14) (c′ν,3 + c′ν,6)s2 + 2c′ν,5s+ 2c′ν,3 − 2cν,1((cν,3 + cν,6)s+ cν,5) 6= 0

at (u, s). The singular point is a swallowtail if and only if cν,1 6= 0 and the left hand side of
(4.14) vanishes, (cν,3 + cν,6)s + cν,5 6= 0, and (4.12) holds at (u, s). Moreover, there are no
cuspidal lips and cuspidal beaks. The singular point (u, s) is a cuspidal cross cap if and only if
cν,1 = 0 and c′ν,1((c′ν,3 + c′ν,6)s2 + 2c′ν,5s+ 2c′ν,3) 6= 0 at (u, s).

There are criteria for these singularities of horo-flat surfaces in [22, Theorem 6.2]. However,
since the condition cν,3 ≡ 0 is assumed in [22, Theorem 6.2], we give a proof.
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Proof. Since (4.10) is equivalent to cν,1(u) 6= 0, Flν is a front at a singular point if and only
if cν,1 6= 0 when Q ≥ 0. We show the proposition by using Proposition B.1. By (4.6) and
(4.7), λ in (4.8) is an identifier of singularities which is defined just before Proposition B.1. If
Q(u0) = 0, then λs(u0, s0) = 0. Thus ηλ(u0, s0) 6= 0 if and only if λu(u0, s0) 6= 0. This proves the
assertion for a cuspidal edge. Furthermore, since ηλ(u0, s0) = 0 implies (λu, λs)(u0, s0) = (0, 0),
this proves the assertion for a swallowtail. When (λu, λs)(u0, s0) = (0, 0), calculating the Hesse
matrix of λ and ηηλ, we have the assertion of the case of Q(u0) = 0 by (3) of Proposition B.1. If
Q(u) > 0, by Proposition B.1 with the data λ = (cν,3+cν,6)s2+2cν,5s+2cν,3 and η = ∂u−cν,1∂s,
we can show the assertion. �

By (4.8), if cν,3 ≡ 0, then (u, 0) is a singular point of Flν . This means that all generating
horocycles are tangent to Flν |S(Flν) at all the regular points of this curve. Thus Flν is said to
be horo-flat tangent if cν,2 ≡ cν,3 ≡ cν,1 − cν,4 ≡ 0 holds (see [22, Section 5] for detail). See also
Section 6.3. If Flν is horo-flat tangent, then we have the following corollary. In this case, since
cν,3 + cν,6 6= 0, it holds that cν,6 6= 0, and S(Flν) = {s(cν,6s+ 2cν,5) = 0}.

Corollary 4.2. Under the assumptions cν,2 ≡ cν,3 ≡ cν,1 − cν,4 ≡ 0 and cν,6 6= 0 on the
singularities of Flν , the map Flν is a front, and the following assertions hold:
(I) If cν,5(u0) = 0, then Q(u0) = 0 and dλ(u0, 0) = 0 hold, in particular there are no cuspidal
edge and swallowtail. The singular point (u0, 0) is a cuspidal beak if and only if

c′ν,5(−2c′ν,5 + cν,1cν,6) 6= 0

at u0, Moreover, there are no cuspidal lips.
(II) If cν,5(u) 6= 0, then Q(u0) > 0 and

(1) dλ 6= 0 at both (u, 0) and (u,−cν,5/cν,6).
(2) A singular point (u, 0) is a cuspidal edge. A singular point (u,−cν,5/cν,6) is a cuspidal

edge if and only if cν,5c
′
ν,6 − 2c′ν,5cν,6 6= 0 at u.

(3) A singular point (u, 0) is not a swallowtail. A singular point (u,−cν,5/cν,6) is a swallow-
tail if and only if cν,5c

′
ν,6−2c′ν,5cν,6 = 0 and a formula (4.12) with cν,3 ≡ 0, s = −cν,5/cν,6

holds at u.

Proof. Since cν,3 ≡ 0, we have hεν ≡ 0 by (4.5). By the assumption cν,6 6= 0, it holds that κt 6= 0.
Again by (4.5), we get cν,1 6= 0. By (4.10), this condition is equivalent to that Flν is a front,
we have the first assertion. One can easily show the other assertions by applying Proposition
4.1. �

5. Normal horo-flat surfaces

In this section, we construct a parametrization of the discriminant set of Hε
lb.

Let f : (U, p)→ H3 be a cuspidal edge. Under the same notation as in Section 4, we assume
(κt, h

ε
b)(u) 6= (0, 0) for any u ∈ I unless otherwise stated.

By using similar arguments to those of Section 4, we obtain the following. Since

(lεb)
′ = hεbt− εκtν,

we have that Hlb(x, u) = (Hlb)u(x, u) = 0 if and only if

xγ = εxb + 1, xt = εκts, xν = hεbs, for some s ∈ R,

where x = xγγ + xtt+ xνν + xbb.
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Since x ∈ H3, it holds that xb = ε
s2

2
(κ2
t + (hεb)

2) and thus

xγ =
s2

2
(κ2
t + (hεb)

2) + 1, xt = εκts, xν = hεbs, xb =
εs2

2
(κ2
t + (hεb)

2).

We set

Dε
lb =

εκtt+ hεbν√
κ2
t + (hεb)

2
,

and call it the normalized ν-Darboux vector field. Now, by a parameter change,

s̃ = s
√
κ2
t + (hεb)

2,

and rewriting s̃ as s, we obtain the following parameterization of DHεlb

(u, s) 7→ x = γ +Dε
lbs+

s2

2
lεb.

As seen in the case of Hlν , since |Dε
lb| = 1, for a fixed u, s 7→ γ +Dε

lbs+
s2

2
lεb is a parabola and

thus a horocycle ([22, Section 4]).
We have that {γ, Dε

lb, εb, (l
ε
b)
′/|(lεb)′|} is a pseudo-orthonormal frame. Analogously to Section 4,

we set

{γb,ab,1,ab,2,ab,3} = {γ, Dε
lb, εb, (l

ε
b)
′/|(lεb)′|}

and

(5.1) Flb(u, s) = F εlb(u, s) = γb + ab,1s+
s2

2
(γb + ab,2).

By definition, Flb is a ∆2-dual of lεb. Similarly to the case of Hε
lν , the invariants cb,1, . . . , cb,6 are

defined by the relation

(5.2)


γ′b
a′b,1
a′b,2
a′b,3

 =


0 cb,1 cb,2 cb,3
cb,1 0 cb,4 cb,5
cb,2 −cb,4 0 cb,6
cb,3 −cb,5 −cb,6 0



γb
ab,1
ab,2
ab,3

.
Then we have

(5.3)

cb,1 =
εκt√

κ2
t + (hεb)

2
,

cb,2 = 0,

cb,3 =
hεb√

κ2
t + (hεb)

2
,

cb,4 = cb,1 =
εκt√

κ2
t + (hεb)

2
,

cb,5 =
δhn

κ2
t + (hεb)

2
,

cb,6 =
−εκb + κ2

b + κ2
t√

κ2
t + (hεb)

2

cb,3 + cb,6 =
√
κ2
t + (hεb)

2,

where we set

δhn = −κν((hεb)
2 + κ2

t )− εκt(hεb)′ + εhεbκ
′
t.

By (5.3), νlb = −(s2/2)γb − sab,1 + (1− s2/2)ab,2 is a ∆1-dual of Flb, and Flb + νlb = γb +ab,2
is a ∆2-dual of Flb. Since the ∆2-dual of Flb degenerates to a curve, Flb is a horo-flat surface.
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It follows that each of Flb is a horo-flat surface normal to the cuspidal edge at any γ(u), so
that we call it a normal horo-flat surface (along the cuspidal edge). An example of the normal
horo-flat surface Flb of f as in (4.3) near (0, 0) is provided by Figure 2. Similar calculations

Figure 2. Cuspidal edge, Flb and the both surfaces together

to those in Section 4, lead to the characterization of the singularities of Flb (just substitute cb,i
into cν,i (i = 1, . . . , 6) in Proposition 4.1 and Corollary 4.2). By comparing (4.5) and (5.3), we
see that changing κν to κb and κt to −κt in the formulae for cν,i, leads to the formulae for cb,i
(i = 1, . . . , 6).

6. Special cuspidal edges

We consider a cuspidal edge f , where either Flν or Flb has special properties. The special horo-
flat surfaces which are one-parameter families of horocycles (horo-flat horocyclic surfaces) are
classified in [22, pp815–818]. We consider here the cases of the horo-cylinder and the horocone.
We review the special horo-flat surfaces given in [22].

Definition 6.1. A horocyclic surface with the invariants c1, . . . , c6 is called a regular horocylin-
drical surface if c1 ≡ c2 ≡ c4 ≡ c5 ≡ 0, and c3(c3 + c6) > 0. A horocyclic surface is called a
secondary regular horocylindrical surface if c1 ≡ c2 ≡ c4 ≡ c6 ≡ 0, and c25 − 2c23 < 0.

Definition 6.2. A horocyclic surface with the invariants c1, . . . , c6 is called a generalized horo-
cone if c1 ≡ c2 ≡ c3 ≡ c4 ≡ 0. A generalized horocone is called a horocone with a single
vertex if c5 ≡ 0 and there is no subinterval J ⊂ I such that c6|J = 0. A horocone with two
vertices is a generalized horocone with the property that there is no subinterval J ⊂ I such
that c5|J = 0, and there exists λ ∈ R such that c6 = λc5. A generalized horocone is called a
semi-horocone if the following holds for (i, j) = (5, 6) or (i, j) = (6, 5): There is no subinterval
J ⊂ I such that ci|J = 0 and cj/ci is not constant on {t ∈ I | ci(u) 6= 0}. If the condition
c1 ≡ c2 ≡ c3 ≡ c4 ≡ c6 ≡ 0 holds and there is no subinterval J ⊂ I such that c5|J = 0, then the
image of the horocyclic surface is a horosphere. We call this a conical horosphere.
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Let α be a function. By (4.5) and substituting cν,1 − cν,4 ≡ 0, cν,2 ≡ 0 in (3.3), we get

(6.1)



c̄ν,1 = c̄ν,4 =
−εκt√

κ2
t + (hεν)2

+ α′,

c̄ν,2 = 0,

c̄ν,3 =
α2

2

√
κ2
t + (hεν)2 + α

δho
κ2
t + (hεν)2

+
hεν√

κ2
t + (hεν)2

,

c̄ν,5 =
δho

κ2
t + (hεν)2

+ α
√
κ2
t + (hεν)2,

c̄ν,6 = −α
2

2

√
κ2
t + (hεν)2 − α δho

κ2
t + (hεν)2

+
−εκν + κ2

ν + κ2
t√

κ2
t + (hεν)2

,

c̄ν,3 + c̄ν,6 =
√
κ2
t + (hεν)2,

and similarly, for a function β, we get

(6.2)



c̄b,1 = c̄b,4 =
εκt√

κ2
t + (hεb)

2
+ β′,

c̄b,2 = 0,

c̄b,3 =
β2

2

√
κ2
t + (hεb)

2 + β
δhn

κ2
t + (hεb)

2
+

hεb√
κ2
t + (hεb)

2
,

c̄b,5 =
δhn

κ2
t + (hεb)

2
+ β

√
κ2
t + (hεb)

2,

c̄b,6 = −β(u)2

2

√
κ2
t + (hεb)

2 − β δhn
κ2
t + (hεb)

2
+
−εκb + κ2

b + κ2
t√

κ2
t + (hεb)

2
,

c̄b,3 + c̄b,6 =
√
κ2
t + (hεb)

2.

We remark that one can obtain the formula for Flb by interchanging κν to κb and κt to −κt in
the formula for Flν .

6.1. Horocylinders as osculating and normal horo-flat surfaces. We consider the condi-
tion for Flν and Flb to be horocylinders. By (6.1) and (6.2), setting

(6.3) αc =
−δho

(κ2
t + (hεν)2)

√
κ2
t + (hεν)2

,

and

(6.4) βc =
−δhn

(κ2
t + (hεb)

2)
√
κ2
t + (hεb)

2
,

we see that cν,5 ≡ 0, cb,5 ≡ 0. Thus, c̄ν,1 = c̄ν,4 ≡ 0 if and only if

(6.5)
−εκt√

κ2
t + (hεν)2

+ α′c ≡ 0,

and c̄b,1 = c̄b,4 ≡ 0 if and only if

(6.6)
εκt√

κ2
t + (hεb)

2
+ β′c ≡ 0.

Set

Cho = −2εκt(κ
2
t + (hεν)2)2 − 2(κ2

t + (hεν)2)(δho )′ + 3δho (κ2
t + (hεν)2)′

and

Chn = 2εκt(κ
2
t + (hεb)

2)2 − 2(κ2
t + (hεb)

2)(δhn)′ + 3δhn(κ2
t + (hεb)

2)′.
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Then the condition (6.5) is equivalent to Cho ≡ 0, and (6.6) is equivalent to Chn ≡ 0. Moreover,
if αc satisfies (6.3), then c̄ν,3 is equal to a positive functional multiplication of

−(δho )2

2(κ2
t + (hεν)2)2

+ hεν ,

and if βc satisfies (6.4), then c̄b,3 is equal to a positive functional multiplication of

−(δhn)2

2(κ2
t + (hεb)

2)2
+ hεb.

Thus we obtain the following proposition.

Proposition 6.3. The horocyclic surface Flν is a regular horocylindrical surface if and only if
Cho ≡ 0 and

−(δho )2

2(κ2
t + (hεν)2)2

+ hεν > 0.

The horocyclic surface Flb is a regular horocylindrical surface if and only if Chn ≡ 0 and

−(δhn)2

2(κ2
t + (hεb)

2)2
+ hεb > 0.

We see that if κt ≡ 0. Then δho = −κb(hεν)2 and δhn = −κν(hεb)
2 hold, and also c̄ν,1 = c̄ν,4 = α′c

and c̄b,1 = c̄b,4 = β′c. We give examples of cuspidal edge whose osculating and normal horo-flat
surfaces are horocylinders.

Example 6.4. (regular horocylindrical surface) We set κt ≡ κb ≡ 0 and κν satisfies hεν > 0.
Setting αc = 0, then we see that c̄ν,1 = c̄ν,2 = c̄ν,4 = c̄ν,5 = 0, and c̄ν,3(c̄ν,3 + c̄ν,6) > 0. Then by
definition, Flν is a regular horocylindrical surface. Similarly, we set κt ≡ κν ≡ 0 and κb satisfies
hεb > 0. Setting βc = 0, then we see that c̄b,1 = c̄b,2 = c̄b,4 = c̄b,5 = 0, and c̄b,3(c̄b,3 + c̄b,6) > 0.
Then by definition, Flb is a regular horocylindrical surface.

Example 6.5. (secondary regular horocylindrical surface) We set κt ≡ κν ≡ 0 and κb = 1.
Setting αc = 0, then we see that c̄ν,1 = c̄ν,2 = c̄ν,4 = c̄ν,6 = 0, and c̄2ν,5 − 2c̄2ν,3 < 0. Then by
definition, Flν is a secondary regular horocylindrical surface. We set κt ≡ κb ≡ 0 and κν = 1.
Setting βc = 0, then we see that c̄b,1 = c̄b,2 = c̄b,4 = c̄b,6 = 0, and c̄2b,5 − 2c̄2b,3 < 0. Then by
definition, Flb is a secondary regular horocylindrical surface.

6.2. Horocones as osculating and normal horo-flat surfaces. If the discriminant Qlν
(respectively, Qlb) of

c̄ν,3 =
α2

2

√
κ2
t + (hεν)2 + α

δho
κ2
t + (hεν)2

+
hεν√

κ2
t + (hεν)2

= 0(
respectively, c̄b,3 =

β2

2

√
κ2
t + (hεb)

2 + β
δhn

κ2
t + (hεb)

2
+

hεb√
κ2
t + (hεb)

2
= 0

)
as an equation of α (respectively, β) is non-negative, then we have a solution α (respectively, β).
We set

σho =
−εκt√

κ2
t + (hεν)2

+ α′

and
σhn =

εκt√
κ2
t + (hεb)

2
+ β′.

Then if σho ≡ 0, (respectively, σhn ≡ 0,) Flν (respectively, Flb) is a generalized horocone. Thus
we can state the following:
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Proposition 6.6. The horocyclic surface Flν is a generalized horocone if and only if σho ≡ 0 and
Qlν ≥ 0. The horocyclic surface Flb is a generalized horocone if and only if σhn ≡ 0 and Qlb ≥ 0.

We give examples of cuspidal edge whose osculating and normal horo-flat surfaces are horo-
cones.

Example 6.7. (horocone with single and two vertices) We take κt ≡ 0, a non-zero constant κb
and a constant κν satisfying hεν > 0 and κ2

b − 2hεν ≥ 0. We also take a constant α which is a
solution that c̄ν,3 = 0. Then c̄ν,1 ≡ c̄ν,2 ≡ c̄ν,3 ≡ c̄ν,4 ≡ 0 holds. Moreover, we see

c̄ν,5 = −κb + αhεν , c̄ν,6 = hεν .

Thus setting κb and κν satisfying −κb+αhεν = 0, then we obtain a horocone with a single vertex.
On the other hand, −κb + αhεν 6= 0, then we obtain a horocone with two vertices.

Similarly, we take κt ≡ 0, a non-zero constant κν and a constant κb satisfying hεb > 0 and
κ2
ν − 2hεb ≥ 0. We also take a constant β which is a solution that c̄b,3 = 0. Then

c̄b,1 ≡ c̄b,2 ≡ c̄b,3 ≡ c̄b,4 ≡ 0

holds. Moreover, we see

c̄b,5 = −κν + βhεb, c̄b,6 = hεb.

Thus setting that κν and κb satisfy −κν + βhεb = 0, then we obtain a horocone with a single
vertex. On the other hand, if −κν + βhεb 6= 0, then we obtain a horocone with two vertices.

Example 6.8. (semi-horocone) We set εκν ≡ 1 and εκt < 0. By (6.1),

c̄ν,1 = c̄ν,4 = −εκt/
√
κ2
t + α′.

Let α be a solution of 1 + α′ = 0, i.e., α = −u + A, where A is a sufficiently large positive
constant such that −εκt is positive around u = 0. We take κt = −2ε(u+A) and κb = −u2 +A2.
Then c̄ν,1 ≡ c̄ν,2 ≡ c̄ν,3 ≡ c̄ν,4 ≡ 0. Moreover, c̄ν,5 = −u2 +A2 and c̄ν,6 = 2(u+A). Thus we get
a semi-horocone Flν .

Similarly, set εκb ≡ 1 and εκt > 0. Let β be a solution of 1 + β′ = 0 i.e., β = −u + B,
where B is a sufficiently small negative constant such that εκt is positive around u = 0. We
take κt = −2ε(u + B) and κν = u2 − B2. Then, we see that c̄b,1 ≡ c̄b,2 ≡ c̄b,3 ≡ c̄b,4 ≡ 0,
c̄b,5 = u2 −B2 and c̄b,6 = −2(u+B). Thus we get a semi-horocone Flb.

6.3. Special cases. If κb ≡ 0, then ν is the principal normal direction of γ, or equivalently, b
is the bi-normal direction of γ. If κν ≡ 0, then ν is the bi-normal direction of γ, and which to
say that b is the principal normal direction of γ.

Important particular cases are:

(i) κν ≡ ε (i.e., hεν ≡ 0) in Hε
lν ,

(ii) κb ≡ ε (i.e., hεb ≡ 0) in Hε
lb.

If (i) is satisfied, then cν,3 ≡ 0 holds, and if (ii) is satisfied, then cb,3 ≡ 0 holds. Namely,
the singular set of the original cuspidal edge and the singular set of the osculating and the
normal horo-flat surfaces coincide respectively. By Proposition 4.1, we have the conditions of
singularities of the osculating and normal horo-flat surfaces in terms of the information of the
singular locus of the cuspidal edge.
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7. Duals of the singular set of the cuspidal edge

Since the curve γ of the parameterization (4.2) takes values in H3, we can consider the ∆1

and ∆2 duals of γ. We set Hs
γ : S3

1 × I → R (respectively, H l
γ : LC∗ × I → R) by

Hs
γ(x, u) = 〈x,γ(u)〉

(
respectively, H l

γ(x, u) = 〈x,γ(u)〉+ 1
)
.

Then we have a parameterization of the discriminant set of Hs
γ given by

DDl(φ, u) = cosφν(u) + sinφb(u).

The corresponding singular set S(DDl) is

S(DDl) =
{

(φ, u)
∣∣∣ cosφ = ±κb/

√
κ2
ν + κ2

b , sinφ = ∓κν/
√
κ2
ν + κ2

b

}
,

with 
γ′

t′

n′

e′

 =


0 1 0 0
1 0 κh 0
0 −κh 0 τh
0 0 −τh 0



γ
t
n
e

,
where {γ, t,n, e} is the hyperbolic Frenet frame along γ and κh = |t′− γ| (see Section 3). Since

DDl|S(DDl) = ±e, it follows that ±e = ±(κbν − κνb)/
√
κ2
b + κ2

ν , and τh = −κt +
κ′νκb − κ′bκν
κ2
b + κ2

ν

([20, p109]).
On the other hand, we have a parameterization of the discriminant set of H l

γ given by

HSl(φ, u) = γ(u) + cosφν(u) + sinφb(u),

where φ ∈ [0, 2π). We also have

S(HSl) =

{
(φ, u)

∣∣∣ cosφ =
κν ±

√
κν + κ2

b − 1

κ2
ν + κ2

b

}
.

Thus DDl and HSl are ∆3-dual each other. Here, ∆3 = {(v,w) ∈ LC∗ × S3
1 | 〈v,w〉 = 1}

and as in Section 2, the phrase “DDl and HSl are ∆3-dual” amounts to say that the map
(DDl, HSl) : U → ∆3 is isotropic with respect to the contact structure defined by the restrictions
of the 1-forms

θ31 = 〈dv,w〉 |∆3
, θ32 = 〈v, dw〉 |∆3

.

See [15] for details.
Now, we give a global property of a curve in the hyperbolic space. There is a relation

(7.1)


γ′

t′

n′

e′

 =


1 0 0 0
0 1 0 0

0 0 ± κν√
κ2
ν + κ2

b

± κb√
κ2
ν + κ2

b

0 0 ± κb√
κ2
ν + κ2

b

∓ κν√
κ2
ν + κ2

b



γ
t
ν
b


between {γ, t,n, e} and {γ, t,ν, b}. If we define θ by

cos θ = ± κν√
κ2
ν + κ2

b

, sin θ = ± κb√
κ2
ν + κ2

b

,

then we get that κt = θ′ − τh. And in the case that the singular set forms a circle C = R/Z, we
obtain ∫

C

(τh + κt) du = θ(1)− θ(0) = 2nπ (n ∈ Z).
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Observe that the integer n is the linking number of {n, e} around {γ, t} along γ(C), with respect
to {ν, b}.

Appendix A. Osculating and normal extrinsic flat surfaces

We consider the following smooth functions on H3(−1)× I:

Hν(x, u) = 〈x,ν(u)〉 ,
Hb(x, u) = 〈x, b(u)〉 .

Then by using the functions Hν and Hb, we can obtain analogous results. The discriminant
set of these functions are envelopes of the osculating or the rectifying hyperbolic planes. In the
Euclidean case, the discriminant set of the functions corresponding to them are envelopes of the
osculating or the rectifying planes. The results and the geometric meaning of them for these
cases are quite similar to those of the case in the Euclidean space [18, 23]. Thus we only give
here the parameterizations for the discriminant sets of Hν and Hb.

The discriminant set DHν of the function Hν can be parameterized by

(u, φ) 7→ coshφγ(u) + sinhφDν(u), Dν(u) =
κtt+ κνb

κ2
t + κ2

ν

(u),

where we assume (κt, κν) 6= (0, 0). This is a one-parameter family of geodesics tangent to the
cuspidal edge. Therefore, DHν is called an osculating extrinsic flat surface along the cuspidal
edge.

The discriminant set DHb of the function Hb can be parameterized by

(u, φ) 7→ coshφγ(u) + sinhφDb(u), Db(u) =
−κtt+ κbν

κ2
t + κ2

b

(u),

where we assume (κt, κb) 6= (0, 0). This is a one-parameter family of geodesics normal to the
cuspidal edge, so that DHb is called a normal extrinsic flat surface along the cuspidal edge.

Appendix B. Criteria for singularities

We state the some criteria to characterize the singularities used in Sections 4 and 5. Let
f : U → H3 be a frontal with a ∆1-dual g : U → S3

1 . A function Λ is called an identifier
of singularities if it is a non-zero functional multiplication of the function det(fu, fv, g, f) for a
coordinate system (u, v) on U . If p ∈ U satisfies rank dfp = 1, then there exists a vector field η
such that 〈ηq〉R = ker dfq for all q ∈ S(f). We call η a null vector field. Let p ∈ U be a singular
point satisfying dΛ(p) 6= 0. Then there exists a parametrization c : ((−z, z), 0)→ (U, p) of S(f)
near p, where z > 0. Let ∇fη be the canonical covariant derivative by η along a map f induced

from the Levi-Civita connection on H3. We set

ψ(u) = det

(
df(γ(u))

dt
,
d(∇fηg)(γ(u))

dt
, g(γ(u)), f(γ(u))

)
.

Then we have the following criteria for singularities:

Proposition B.1. Let p ∈ U be a singular point of f satisfying rank dfp = 1. Then p is

(1) a cuspidal edge if and only if f is a front at p, and ηΛ(p) 6= 0.
(2) a swallowtail if and only if f is a front at p, dΛ(p) 6= 0, ηΛ(p) = 0 and ηηΛ(p) 6= 0.
(3) a cuspidal beak (respectively, cuspidal lip) if and only if f is a front at p, dΛ(p) = 0,

det Hess Λ(p) < 0 and ηηΛ(p) 6= 0 (respectively, det Hess Λ(p) > 0).
(4) a cuspidal cross cap if and only if ηΛ(p) 6= 0, ψ(0) = 0 and ψ′(0) 6= 0.



HORO-FLAT SURFACES ALONG CUSPIDAL EDGES IN THE HYPERBOLIC SPACE 57

These criteria for singularities in H3 can be easily shown by well-known criteria in [35, Corol-
lary 2.5] (see also [25, Proposition 1.3]) for (1) and (2), in [22, Theorem A.1] for (3), and in
[8, Corollary 1.5] for (4).
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