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Dedicated to Professor Toshizumi Fukui for his sixtieth birthday.

Abstract. In the second, fourth and fifth authors’ previous work, a duality on generic real
analytic cuspidal edges in the Euclidean 3-space R3 preserving their singular set images and

first fundamental forms, was given. Here, we call this an “isometric duality”. When the

singular set image has no symmetries and does not lie in a plane, the dual cuspidal edge is not
congruent to the original one. In this paper, we show that this duality extends to generalized

cuspidal edges in R3, including cuspidal cross caps, and 5/2-cuspidal edges. Moreover, we

give several new geometric insights on this duality.

Introduction

Consider a generic cuspidal edge germ f whose singular set image is a given space curve C. In
the second, fourth and fifth authors’ previous work [14], the existence of an isometric dual f̌ of f
was shown, which is a cuspidal edge germ having the same first fundamental form as f . Roughly
speaking, a cuspidal edge which has the same first fundamental form and the same singular set
image as f but is not right equivalent to f , is called an “isomer” of f (see Definition 0.6 for
details). The isometric dual f̌ is a typical example of isomers of f . Recently, the authors found
that if we reverse the orientation of C, two other candidates of isomers of f denoted by f∗ and
f̌∗ are obtained by imitating the construction of f̌ . These two map germs f∗ and f̌∗ are cuspidal
edge germs which are called the inverse and the inverse dual of f , respectively (f̌∗ is just the
isometric dual of f∗). In this paper, we will show that all of isomers of f are right equivalent to
one of

f̌ , f∗, f̌∗.

We will also determine the number of congruence classes in the set of isomers of f .

By the terminology “Cr-differentiable” we mean C∞-differentiability if r = ∞ and real an-
alyticity if r = ω. We denote by R3 the Euclidean 3-space. Let U be a neighborhood of the
origin (0, 0) in the uv-plane R2, and let f : U → R3 be a Cr-map. Without loss of generality,
we may assume f(o) = 0, where

(0.1) o := (0, 0), 0 := (0, 0, 0).
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A point p ∈ U is called a singular point if f is not an immersion at p. A singular point p ∈ U
is called a cuspidal edge point (resp. a generalized cuspidal edge point) if there exist local Cr-
diffeomorphisms ϕ on R2 and Φ on R3 such that ϕ(o) = p, Φ(f(p)) = 0 and

(f3/2 :=)(u, v2, v3) = Φ ◦ f ◦ ϕ(u, v)
(
resp. (u, v2, v3α(u, v)) = Φ ◦ f ◦ ϕ(u, v)

)
,

where α(u, v) is a Cr-function. Similarly, a singular point p ∈ U is called a 5/2-cuspidal edge
point (resp. a fold singular point) if there exist local Cr-diffeomorphisms ϕ on R2 and Φ on R3

such that ϕ(o) = p, Φ(f(p)) = 0 and

(f5/2 :=)(u, v2, v5) = Φ ◦ f ◦ ϕ(u, v)
(
resp. (u, v2, 0) = Φ ◦ f ◦ ϕ(u, v)

)
.

Also, a singular point p ∈ U is called a cuspidal cross cap point if there exist local Cr-
diffeomorphisms ϕ on R2 and Φ on R3 such that ϕ(o) = p, Φ(f(p)) = 0 and

(fccr :=)(u, v2, uv3) = Φ ◦ f ◦ ϕ(u, v).

These singular points are all generalized cuspidal edge points.
Let Gr3/2(R2

o,R
3) (resp. Gr(R2

o,R
3)) be the set of germs of Cr-cuspidal edges (resp. gener-

alized Cr-cuspidal edges) f(u, v) satisfying f(o) = 0. We fix l > 0 and consider an embedding
(i.e. a simple regular space curve)

c : J → R3 (J := [−l, l])
such that c(0) = 0. We do not assume here that u 7→ c(u) is the arc-length parametrization (if
necessary, we assume this in latter sections). We denote by C the image of c. Here, we ignore
the orientation of C and think of it as the singular set image (i.e. the image of the singular
set) of f . We let Gr3/2(R2

o,R
3, C) (resp. Gr(R2

o,R
3, C)) be the subset of Gr3/2(R2

o,R
3) (resp.

Gr(R2
o,R

3)) such that the singular set image of f is contained in C (we call C the edge of f).
Similarly, a subset of Gr(R2

o,R
3, C) denoted by

Grccr(R
2
o,R

3, C), (resp. Gr5/2(R2
o,R

3, C) )

consisting of germs of cuspidal cross caps (resp. 5/2-cuspidal edges) is also defined.
Throughout this paper, we assume the curvature function κ(u) of c(u) satisfies

(0.2) κ(u) > 0 (u ∈ J).

Let U be a neighborhood of J × {0} of R2 and f : U → R3 a Cr-map consisting only of
generalized cuspidal edge points along J × {0} such that

(0.3) f(u, 0) = c(u) (u ∈ J).

We denote by Gr(R2
J ,R

3, C) the set of such f (f is called a generalized cuspidal edge along C).
Like as the case of map germs at o, the sets

Gr3/2(R2
J ,R

3, C), Grccr(R
2
J ,R

3, C), Gr5/2(R2
J ,R

3, C)

are also canonically defined. For each point P on the edge C, the plane Π(P ) passing through
P which is perpendicular to the curve C is called the normal plane of f at P . The section of
the image of f by the normal plane Π(P ) of C at P is a planar curve with a singular point at
P . We call this the sectional cusp of f at P . Moreover, we can find a tangent vector v ∈ TPR3

at P , which points in the tangential direction of the sectional cusp at P . We call v the cuspidal
direction (cf. (3.6) and Figure 1). The angle θP of the cuspidal direction from the principal
normal vector of C at P is called the cuspidal angle.

If we normalize the initial value θc(0) ∈ (−π, π] at c(0)(= 0), then the cuspidal angle

θ(u) := θc(u) (u ∈ J)
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Figure 1. A cuspidal edge and its sectional cusp

at c(u) can be uniquely determined as a Cr-function on J . In [12, 16], the singular curvature
κs(u) and the limiting normal curvature κν(u) along the edge c(u) are defined. In our present
situation, they can be expressed as (cf. [3, Remark 1.9])

(0.4) κs(u) := κ(u) cos θ(u), κν(u) := κ(u) sin θ(u) (u ∈ J).

By definition, κ(u) =
√
κs(u)2 + κν(u)2 holds on J . We say that f ∈ Gr(R2

o,R
3, C) is generic

at o if

(0.5) |κs(0)| < κ(0).

We denote by Gr∗(R
2
o,R

3, C) the set of germs of generic generalized Cr-cuspidal edges in
Gr(R2

o,R
3, C), and set

Gr∗,3/2(R2
o,R

3, C) := Gr∗(R
2
o,R

3, C) ∩ Gr3/2(R2
o,R

3, C),

Gr∗,ccr(R
2
o,R

3, C) := Gr∗(R
2
o,R

3, C) ∩ Grccr(R
2
o,R

3, C),(0.6)

Gr∗,5/2(R2
o,R

3, C) := Gr∗(R
2
o,R

3, C) ∩ Gr5/2(R2
o,R

3, C).

On the other hand, for f ∈ Gr(R2
J ,R

3, C), we consider the condition

(0.7) |κs(u)| < κ(u) (u ∈ J),

which implies that all singular points of f along the curve C are generic. We denote by

(0.8) Gr∗(R
2
J ,R

3, C)

the set of f ∈ Gr(R2
J ,R

3, C) satisfying (0.7). Moreover, if

(0.9) max
u∈J
|κs(u)| < min

u∈J
κ(u)

holds, then f is said to be admissible. We denote by

(0.10) Gr∗∗(R
2
J ,R

3, C)

the set of admissible f ∈ Gr(R2
J ,R

3, C). Then by imitating (0.6),

(0.11) Gr∗,3/2(R2
J ,R

3, C), Gr∗∗,3/2(R2
J ,R

3, C)
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are also defined. The following assertion is obvious:

Lemma 0.1. Suppose that f belongs to Gr3/2(R2
o,R

3, C) (resp. Gr∗,3/2(R2
o,R

3, C) ). Then there

exists ε(> 0) such that f is an element of Gr3/2(R2
J(ε),R

3, C) (resp. Gr∗∗,3/2(R2
J(ε),R

3, C)), where

J(ε) := [−ε, ε].

Let O(3) (resp. SO(3)) be the orthogonal group (resp. the special orthogonal group) as the
isometry group (resp. the orientation preserving isometry group) of R3 fixing the origin 0.

Definition 0.2. Suppose that fi (i = 1, 2) are generalized cuspidal edges belonging to
Gr(R2

o,R
3, C) (resp. Gr(R2

J ,R
3, C)). Then the image of f1 is said to have the same image

as f2 if there exists a neighborhood Ui(⊂ R2) of o (resp. J × {0}) such that f1(U1) = f2(U2).
On the other hand, f1 is said to be congruent to f2 if there exists an orthogonal matrix T ∈ O(3)
such that T ◦ f1 has the same image as f2.

We then define the following two equivalence relations:

Definition 0.3. For a given f belonging to Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)), we denote by
ds2f its first fundamental form. A generalized cuspidal edge g belonging to Gr(R2

o,R
3, C) (resp.

Gr(R2
J ,R

3, C)) is said to be right equivalent to f if there exists a diffeomorphism ϕ defined on
a neighborhood of o (resp. J × {0}) in R2 such that g = f ◦ ϕ.

Definition 0.4. For a given generalized cuspidal edge f ∈ Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)),
we denote by ds2f its first fundamental form. A generalized cuspidal edge g ∈ Gr(R2

o,R
3, C)

(resp. Gr(R2
J ,R

3, C)) is said to be isometric to f if there exists a diffeomorphism ϕ defined on
a neighborhood of o (resp. J × {0}) in R2 such that ϕ∗ds2f = ds2g.

In particular, we consider the case f = g. If ϕ∗ds2f = ds2f and ϕ is not the identity map, then

ϕ is called a symmetry of ds2f . Moreover, if ϕ reverses the orientation of the singular curve of f ,
then ϕ is said to be effective.

Remark 0.5. A cuspidal edge g ∈ Gr3/2(R2
o,R

3, C) (resp. Gr3/2(R2
J ,R

3, C)) has the same image

as a given germ f ∈ Gr3/2(R2
o,R

3, C) (resp. Gr3/2(R2
J ,R

3, C)) if and only if g is right equivalent

to f (cf. [10]).

If two generalized cuspidal edges f, g ∈ Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)) are right equiv-
alent, then they are isometric each other. However, the converse may not be true. So we give
the following:

Definition 0.6. For a given f ∈ Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)), a generalized cuspidal
edge g ∈ Gr(R2

o,R
3, C) (resp. Gr(R2

J ,R
3, C)) is called an isomer of f (cf. [14]) if it satisfies the

following conditions;

(1) g is isometric to f , and
(2) g is not right equivalent to f .

In this situation, we say that g is a faithful isomer of f if

• there exists a local diffeomorphism ϕ such that ϕ∗ds2f = ds2g, and

• the orientations of C induced by u 7→ f ◦ ϕ(u, 0) and u 7→ g(u, 0) are compatible with
respect to the one induced by u 7→ f(u, 0).

In [14, Corollary D], it was shown the existence of an involution

(0.12) Gω∗,3/2(R2
o,R

3, C) 3 f 7→ f̌ ∈ Gω∗,3/2(R2
o,R

3, C).
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To construct f̌ , we need to apply the so-called Cauchy-Kowalevski theorem on partial differential
equations of real analytic category (cf. Theorem 3.8). Here, f̌ is called the isometric dual of f ,
which satisfies the following properties:

(i) The first fundamental form of f̌ coincides with that of f .
(ii) The map f̌ is a faithful isomer of f .
(iii) If θ(P ) is the cuspidal angle of f at P (∈ C), then −θ(P ) is the cuspidal angle of f̌ at P .

In [14], a necessary and sufficient condition for a given positive semi-definite metric to be realized
as the first fundamental form of a cuspidal edge along C is given. In this paper, we first prove
the following using the method given in [14]:

Theorem I. There exists an involution (called the first involution)

(0.13) IC : Gω∗ (R2
J ,R

3, C) 3 f 7→ f̌ ∈ Gω∗ (R2
J ,R

3, C)

defined on Gω∗ (R2
J ,R

3, C) (cf. (0.8)) satisfying the properties (i), (ii) and (iii) above. Moreover,
regarding f and f̌ as map germs at o (cf. Lemma 0.1), IC induces a map

(0.14) Io : Gω∗ (R2
o,R

3, C) 3 f 7→ f̌ ∈ Gω∗ (R2
o,R

3, C),

which gives a generalization of the map as in (0.12).

The existence of the map Io follows also from [5, Theorem B], since f̌ is strongly congruent
to f in the sense of [5, Definition 3]. However, the existence of the map IC itself does not follow
from [5], since f̌ given in Theorem I is not a map germ at o, but a map germ along the curve
C. Some variants of this result for germs of swallowtails and cuspidal cross caps were given in
[5, Theorem B] using a method different from [14]. (For swallowtails, the duality corresponding
to the above properties (i), (ii) and (iii) are not obtained, see item (4) below.) The authors find
Theorem I to be suggestive of the following geometric problems:

(1) How many right equivalence classes of isomers of f exist other than f̌?
(2) When are isomers non-congruent to each other?
(3) The existence of the isometric dual can be proved by applying the Cauchy-Kowalevski

theorem. So we need to assume that the given generalized cuspidal edges are real ana-
lytic. It is then natural to ask if one can find a new method for constructing the isometric
dual in the C∞-differentiable category.

(4) Can one extend isometric duality to a much wider class, say, for swallowtails?

In this paper, we show the following:

• For a given generalized cuspidal edge f ∈ Gω∗∗(R
2
J ,R

3, C), there exists a unique gener-
alized cuspidal edge f∗ ∈ Gω∗∗(R

2
J ,R

3, C) (called the inverse of f) having the same first
fundamental form as f along the space curve c(−u) whose cuspidal angle has the same
sign as that of f . Moreover, any isomers of f are right equivalent to one of {f, f̌ , f∗, f̌∗}
(see Theorem II), where f̌∗ := IC(f∗) is called the inverse dual of f .

• The four maps f, f̌ , f∗, f̌∗ are non-congruent in general. Moreover, the right equiva-
lence classes and congruence classes of these four surfaces are determined in terms of the
properties of C and ds2f (cf. Theorems III and IV).

• Suppose that the image of a C∞-differentiable cuspidal edge f is invariant under a non-
trivial symmetry T ∈ SO(3) (cf. Definition 1.2) of R3. Then explicit construction of f̌
without use of the Cauchy-Kowalevski theorem is given (see Example 5.3).

About the last question (4), the authors do not know whether the isomers of a given swallowtail
will exist in general, since the method given in this paper does not apply directly. So it left here
as an open problem. (A possible isometric deformations of swallowtails are discussed in authors’
previous work [5].)
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The paper is organized as follows: In Section 1, we explain our main results. In Section 2,
we review the definition and properties of Kossowski metrics. In Section 3, we prove Theorem I
as a modification of the proof of [14]. In Section 4, we recall a representation formula for
generalized cuspidal edges given in Fukui [3], and prove Theorem II. In Section 5, we investigate
the properties of generic cuspidal edges with symmetries. Moreover, we prove Theorems III and
IV. Several examples are given in Section 6. Finally, in the appendix, a representation formula
for generalized cusps in the Euclidean plane is given.

1. Results

Let ds2 be a Cr-differentiable positive semi-definite metric on a Cr-differentiable 2-manifold
M2. A point o ∈M2 is called a regular point of ds2 if it is positive definite at o, and is called a
singular point (or a semi-definite point) if ds2 is not positive definite at o. Kossowski [8] defined
a certain kind of positive semi-definite metrics called “Kossowski metrics” (cf. Section 2). We
let ds2 be such a metric. Then for each singular point o ∈ M2, there exists a regular curve
γ : (−ε, ε) → M2 such that γ(0) = o and γ parametrizes the singular set of ds2 near o. Such
a curve is called the singular curve of ds2 near o. In this situation, if ds2(γ′(0), γ′(0)) does not
vanish, then we say that “ds2 is of type I at o”. The first fundamental forms (i.e. the induced
metrics) of germs of generalized cuspidal edges are Kossowski metrics of type I (cf. Proposition
3.1).

Setting M2 := (R2;u, v), we denote by KrI (R2
o) the set of germs of Cr-Kossowski metrics of

type I at o := (0, 0). We fix such a ds2 ∈ KrI (R2
o). Then the metric is expressed as

ds2 = Edu2 + 2Fdudv +Gdv2,

and there exists a Cr-function λ such that EG− F 2 = λ2. Let K be the Gaussian curvature of
ds2 defined at points where ds2 is positive definite. Then

(1.1) K̂ := λK

can be considered as a Cr-differentiable function defined on a neighborhood U(⊂ R2) of o (cf.

[12, 5]). If K̂ vanishes (resp. does not vanish) at a singular point q ∈ U of ds2, then ds2 is
said to be parabolic (resp. non-parabolic) at q (see Definition 2.6). We denote by Kr∗(R

2
o) (resp.

Krp(R
2
o)) the set of germs of non-parabolic (resp. parabolic) Cr-Kossowski metrics of type I at

o. The subset of Krp(R
2
o) defined by

Krp,∗(R
2
o) := {ds2 ∈ Krp(R

2
o) ; K̂ ′(o) 6= 0}(

= {ds2 ∈ KrI (R2
o) ; K̂(o) = 0, K̂ ′(o) 6= 0}

)
plays an important role in this paper, where K̂ ′ = ∂K̂/∂u. Metrics belonging to Krp,∗(R

2
o)

are called p-generic. On the other hand, if K̂ vanishes identically along the singular curve of
ds2 ∈ KrI (R2

o), we call ds2 an asymptotic Kossowski metric of type I. We let Kra(R2
o) be the set

of germs of such metrics. This terminology comes from the following two facts:

• for a regular surface, a direction where the normal curvature vanishes is called an as-
ymptotic direction, and

• the induced metric of a cuspidal edge whose limiting normal curvature κν vanishes
identically along its singular set belongs to Kra(R2

o). (Such a cuspidal edge is called an
asymptotic cuspidal edge, see Proposition 4.12.)
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By definition, we have

Kr∗(R
2
o) ∩ Krp(R

2
o) = ∅, Kr∗(R

2
o) ∪ Krp(R

2
o) = KrI (R2

o),

Kra(R2
o) ⊂ Krp(R

2
o) ⊂ KrI (R2

o).

For ds2 ∈ Kra(R2
o), the Gaussian curvature K can be extended on a neighborhood of o as a Cr-

differentiable function. Let η ∈ ToR2 be the null vector at the singular point o of the asymptotic
Kossowski metric ds2. If

(1.2) dK(η)(o) 6= 0,

then ds2 is said to be a-generic, and we denote by Kra,∗(R
2
o)(⊂ Kra(R2

o)) the set of germs of

a-generic asymptotic Cr-Kossowski metrics. Considering the first fundamental form ds2f of f ,
we can define a map

(1.3) Jo : Gr∗(R
2
o,R

3, C) 3 f 7→ ds2f ∈ KrI (R2
o).

Theorem II. There exists an involution (called the second involution)

I∗C : Gω∗∗(R
2
J ,R

3, C) 3 f 7→ f∗ ∈ Gω∗∗(R
2
J ,R

3, C)

defined on Gω∗∗(R
2
J ,R

3, C) (cf. (0.11)) satisfying the following properties:

(1) f∗ has the same first fundamental form as f , and is a non-faithful isomer of f ,
(2) I∗C ◦ IC = IC ◦ I∗C , where IC is the first involution as in Theorem I.
(3) Regarding f and f∗ as map germs at o (cf. Lemma 0.1), I∗C canonically induces a map

(1.4) I∗o : Gω∗ (R2
o,R

3, C) 3 f 7→ f∗ ∈ Gω∗ (R2
o,R

3, C)

such that Jo ◦ I∗o = Jo and I∗o ◦ Io = Io ◦ I∗o .
(4) Suppose that g belongs to Gω∗ (R2

o,R
3, C) (resp. Gω∗∗(R

2
J ,R

3, C)). If the first fundamental
form of g is isometric to that of f , then g is right equivalent to one of f, f̌ , f∗ and f̌∗.

Recently, Fukui [3] gave a representation formula for generalized cuspidal edges along their
edges in R3. (In [3], a similar formula for swallowtails is also given, although it is not applied in
this paper.) We denote by Cr(Ro) (resp. Cr(R2

o)) the set of Cr-function germs at the origin of
R (resp. R2). We fix a generalized cuspidal edge f ∈ Gr(R2

o,R
3, C) arbitrarily. The sectional

cusp of f at c(u) induces a function µ(u, t) ∈ Cr(R2
o) which is called the “extended half-cuspidal

curvature function” giving the normalized curvature function of the sectional cusp at c(u) (see
the appendix). The value

(1.5) κc(u) :=
µ(u, 0)

2

coincides with the cuspidal curvature at the singular point of the sectional cusp, and so it is
called the cuspidal curvature function of f (cf. [12]). In Section 4, we give a Björling-type
representation formula for cuspidal edges (cf. Proposition 4.3), which is a modification of the
formula given in Fukui [3]. (In fact, Fukui [3] expressed the sectional cusp as a pair of functions,
but did not use the function µ.) Fukui [3] explained several geometric invariants of cuspidal
edges in terms of κs, κν and θ. In Section 4, using several properties of modified Fukui’s formula
together with the proof of Theorem I, we reprove the following assertion which determine the
images of the maps Io and Jo (the assertions for the map I∗o are not given in [14, 5, 6]):

Fact 1.1. The maps Io, I∗o and Jo (cf. (0.14), (1.3) and (1.4)) satisfy the followings:

(1) These two maps Io and I∗o are involutions on Gω∗,3/2(R2
o,R

3, C), and Jo maps

Gω∗,3/2(R2
o,R

3, C) onto Kω∗ (R2
o) (cf. [14, Theorem 12]).
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(2) The two maps Io and I∗o are involutions on Gω∗,ccr(R
2
o,R

3, C), and Jo maps

Gω∗,ccr(R
2
o,R

3, C) onto Kωp,∗(R
2
o) (cf. [5, Theorem A]).

(3) The two maps Io and I∗o are involutions on Gω∗,5/2(R2
o,R

3, C), and Jo maps

Gω∗,5/2(R2
o,R

3, C) onto Kωa,∗(R
2
o) (cf. [6, Theorem 5.6]).

We may assume that the origin 0 is the midpoint of C, and give here the following terminolo-
gies:

Definition 1.2. The curve C admits a symmetry at 0 if there exists T ∈ O(3) such that
T (C) = C and T is not the identity. Moreover, T is said to be trivial if T (P ) = P for all
P ∈ C. A symmetry of C which is not trivial is called a non-trivial symmetry. (Obviously, each
non-trivial symmetry reverses the orientation of C.) A non-trivial symmetry is called positive
(resp. negative) if T ∈ SO(3) (resp. T ∈ O(3) \ SO(3)).

If C lies in a plane, then there exists a reflection S ∈ O(3) with respect to the plane. Then S
is a trivial symmetry of C. We prove the following assertion.

Theorem III. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C), that is, f is admissible. Then the number of the

right equivalence classes of f , f̌ , f∗ and f̌∗ is four if and only if ds2f has no symmetries (cf.

Definition 0.4).

Moreover, we can prove the following:

Theorem IV. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C). Then the number Nf of the congruence classes of

the images of f, f̌ , f∗ and f̌∗ satisfies the following properties:

(1) If C has no non-trivial symmetries, and also ds2f has no symmetries, then Nf = 4,

(2) if not the case in (1), it holds that Nf ≤ 2,
(3) Nf = 1 if and only if

(a) C lies in a plane and has a non-trivial symmetry,
(b) C lies in a plane and ds2f has a symmetry, or

(c) C has a positive symmetry and ds2f also has a symmetry.

2. Kossowski metrics

In this section, we quickly review several fundamental properties of Kossowski metrics.

Definition 2.1. Let p be a singular point of a given positive semi-definite metric ds2 on M2.
Then a non-zero tangent vector v ∈ TpM2 is called a null vector if

(2.1) ds2(v,v) = 0.

Moreover, a local coordinate neighborhood (U ;u, v) is called adjusted at p ∈ U if ∂v := ∂/∂v
gives a null vector of ds2 at p.

It can be easily checked that (2.1) implies that ds2(v,w) = 0 for all w ∈ TpM2. If (U ;u, v)
is a local coordinate neighborhood adjusted at p ∈ U , then F (p) = G(p) = 0 holds, where

(2.2) ds2 = E du2 + 2F du dv +Gdv2.

Definition 2.2. A singular point p ∈M2 of a Cr-differentiable positive semi-definite metric ds2

on M2 is called K-admissible if there exists a local coordinate neighborhood (U ;u, v) adjusted
at p satisfying

(2.3) Ev(p) = 2Fu(p), Gu(p) = Gv(p) = 0,

where E,F,G are the Cr-functions on U given in (2.2).
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If ds2f is the induced metric of a Cr-map f : U → R3 and fv(p) = 0, then (2.3) is satisfied

automatically (cf. Proposition 3.1). The property (2.3) does not depend on the choice of a local
coordinate system adjusted at p, as shown in [8] and [4, Proposition 2.7]. In fact, a coordinate-
free treatment for the K-admissibility of singular points is given in [8] and [4, Definition 2.3].

Definition 2.3. A positive semi-definite Cr-differentiable metric ds2 is called a Kossowski metric
if each singular point p ∈M2 of ds2 is K-admissible and there exists a Cr-function λ(u, v) defined
on a local coordinate neighborhood (U ;u, v) of p such that

EG− F 2 = λ2 (on U),(2.4)

(λu(p), λv(p)) 6= (0, 0),(2.5)

where E,F,G are Cr-functions on U given in (2.2).

The above function λ is determined up to ±-ambiguity (see [5, Proposition 3]). We call such
a λ the signed area density function of ds2 with respect to the local coordinate neighborhood
(U ;u, v). The following fact is known (cf. [8, 16]).

Fact 2.4. Let ds2 be a Cr-differentiable Kossowski metric defined on a domain U of the uv-
plane. Then the 2-form dÂ := λdu ∧ dv on U is defined independently of the choice of adjusted
local coordinates (u, v).

We call dÂ the signed area form of ds2. Let K be the Gaussian curvature defined on the
complement of the singular set of ds2.

Fact 2.5 ([8] and [4, Theorem 2.15]). The 2-form Ω := KdÂ can be extended as a Cr-differential
form on U .

Definition 2.6. We call Ω the Euler form of ds2. If Ω vanishes (resp. does not vanish) at a
singular point p ∈ U of ds2, then p is called a parabolic point (resp. non-parabolic point).

The following fact is also known (cf. [8, 4, 5]).

Fact 2.7. Let p be a singular point of a Kossowski metric ds2. Then the null space (i.e. the
subspace generated by null vectors at p) of ds2 is 1-dimensional.

By applying the implicit function theorem for λ (cf. (2.5)), there exists a regular curve γ(t)
(|t| < ε) in the uv-plane (called the singular curve) parametrizing the singular set of ds2 such
that γ(0) = p. Then there exists a Cr-differentiable non-zero vector field η(t) along γ(t) which
points in the null direction of the metric ds2. We call η(t) a null vector field along the singular
curve γ(t).

Definition 2.8 ([4]). A singular point p ∈M2 of a Kossowski metric ds2 is said to be of type I
or an A2 point if the derivative γ′(0) of the singular curve at p (called the singular direction at
γ(t)) is linearly independent of the null vector η(0). Moreover, ds2 is called of type I if all of the
singular points of ds2 are of type I.

3. Generalized cuspidal edges

Fix a bounded closed interval J(⊂ R) and consider a Cr-embedding c : J → R3 with arc-
length parameter. We assume that the curvature function κ(u) of c(u) is positive everywhere.

We fix a Cr-map f̃ : Ũ → R3 defined on a domain Ũ in the xy-plane R2 containing J1 × {0}
such that each point of J1 × {0} is a generalized cuspidal edge point and

f̃(J1 × {0}) = C (C := c(J)),
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where J1 is a bounded closed interval in R. Such an f̃ is called a generalized cuspidal edge along
C. For such an f̃ , there exists a diffeomorphism

ϕ : U 3 (u, v) 7→ (x(u, v), y(u, v)) ∈ ϕ(U)(⊂ Ũ)

such that

(3.1) f(u, v) := f̃(x(u, v), y(u, v))

satisfies

(3.2) f(u, v) = c(u) +
v2

2
ξ̂(u, v),

where ξ̂(u, 0) gives a vector field along c which is linearly independent of c′(u).

Proposition 3.1. The induced metrics of Cr-differentiable generalized cuspidal edges are Cr-
differentiable Kossowski metrics whose singular points are of type I.

Proof. Let f be a generalized cuspidal edge as in (3.2), and let ds2f = Edu2 + 2Fdudv + Gdv2

be the first fundamental form of f . Then

E = fu · fu, F = fu · fv, G := fv · fv
hold, where “·” is the inner product of R3. Since fv(u, 0) = 0, one can easily check (2.3). By
(3.2), we have

EG− F 2 = |fu × fv|2 = v2
∣∣∣∣(c′ +

v2

2
ξ̂u

)
×
(
ξ̂ +

v

2
ξ̂v

)∣∣∣∣2 ,
where × denotes the cross product in R3. Since two vectors c′(u), ξ̂(u, 0) are linearly indepen-
dent, the function λ on U given by

(3.3) λ := vλ0, λ0 :=

∣∣∣∣(c′ +
v2

2
ξ̂u

)
×
(
ξ̂ +

v

2
ξ̂v

)∣∣∣∣
is Cr-differentiable and λ0(u, 0) 6= 0. Moreover, λ2 coincides with EG− F 2. Since λv 6= 0, ds2f
is a Kossowski metric. Since fv(u, 0) = 0, ∂v := ∂/∂v gives the null-direction, which is linearly
independent of the singular direction ∂u. So all singular points of ds2f are of type I. �

Let ds2f be the induced metric of Cr-differentiable generalized cuspidal edge f ∈ Gr(R2
J ,R

3, C).

We set K̂(:= λK) (cf. (1.1)), where K is the Gaussian curvature of ds2f defined at points where

ds2f is positive definite. As mentioned in the introduction, K̂ can be extended as a Cr-function

on U . Moreover, Ǩ := vK also can be considered as a Cr-function on U (cf. [12, 5]).

Corollary 3.2. The following assertions hold:

(1) K̂(u, 0) 6= 0 if and only if Ǩ(u, 0) 6= 0, and

(2) K̂u(u, 0) 6= 0 if and only if Ǩu(u, 0) 6= 0, under the assumption K̂(u, 0) = 0.

Proof. By (3.3), we have the expression λ = vλ0, where λ0(u, 0) 6= 0. So if we set Ǩ = vK,

then K̂ = λ0Ǩ, and K̂(u, 0) = λ0(u, 0)Ǩ(u, 0) hold, and so the first assertion is obvious.

Differentiating K̂ = λ0Ǩ, we have

K̂u = (λ0)uǨ + λ0Ǩu.

Since K̂(u, 0) = 0 implies Ǩ(u, 0) = 0, we have K̂u(u, 0) = λ0(u, 0)Ǩu(u, 0), proving the second
assertion. �
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Remark 3.3. For a generalized cuspidal edge f ,

ν(u, v) :=
(2c′(u) + v2ξ̂u(u, v))× (2ξ̂(u, v) + vξ̂v(u, v))

|(2c′(u) + v2ξ̂u(u, v))× (2ξ̂(u, v) + vξ̂v(u, v))|
gives a Cr-differentiable unit normal vector field on U . So f is a frontal map.

Definition 3.4. A parametrization (u, v) of f ∈ Gr(R2
J ,R

3, C) is called an adapted coordinate
system (cf. [12, Definition 3.7]) if

(1) fv(u, 0) = 0 and |fu(u, 0)| = |fvv(u, 0)| = 1 along the u-axis,
(2) fvv(u, 0) is perpendicular to fu(u, 0).

To show the existence of an adapted coordinate system, we prepare the following under the
assumption that the curve c(u) is real analytic:

Lemma 3.5 ([5, Proposition 6]). Let ds2 be a Cω-differentiable Kossowski metric defined on an
open subset U(⊂ R2). Suppose that γ : J → U is a real analytic singular curve with respect to
ds2 such that

(3.4) ds2(γ′(t), γ′(t)) > 0 (t ∈ J).

Then, for each t0 ∈ J , there exists a Cω-differentiable local coordinate system (V ;u, v) containing
(t0, 0) such that V ⊂ U and the coefficients E,F,G of the first fundamental form

ds2 = Edu2 + 2Fdudv +Gdv2

satisfy the following three conditions:

(1) γ(u) = (u, 0), E(u, 0) = 1 and Ev(u, 0) = 0 hold along the u-axis,
(2) F (u, v) = 0 on V , and
(3) there exists a Cω-function G0 defined on V such that G(u, v) = v2G0(u, v)/2 and

G0(u, 0) = 2.

Proof. Applying [5, Proposition 6] at the point (t0, 0) on a singular curve of ds2, we obtain the
desired local coordinate system. �

Corollary 3.6. For each generalized cuspidal edge f ∈ Gω(R2
J ,R

3, C) along C and for each
singular point p of f , there exists a local coordinate neighborhood (V ;u, v) of p such that the
restriction f |V of f is parametrized by an adapted coordinate system.

Proof. We let ds2f be the first fundamental form of f(x, y). By Lemma 3.5, we obtain a parameter

change (x, y) 7→ (u(x, y), v(x, y)) on a neighborhood of p such that the new parameter (u, v) of
f(u, v) defined by (3.1) satisfies (1)-(3) of Lemma 3.5 for the first fundamental form ds2f of f .

Then we can show that this new coordinate system (u, v) is the desired one: Since the u-axis is
the singular set of ds2f , we have fv(u, 0) = 0. On the other hand, fu(u, 0) · fu(u, 0) = E(u, 0) = 1
and

(3.5) fvv(u, 0) · fu(u, 0) =
∂F (u, v)

∂v

∣∣∣∣
v=0

= 0.

Finally, we have

fvv(u, 0) · fvv(u, 0) =
1

2

∂2G(u, v)

∂v2

∣∣∣∣
v=0

=
G0(u, 0)

2
= 1,

proving the assertion. �
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From now on, we assume that f(u, v) is parametrized by the local coordinate system as in
Definition 3.4. Then u is the arc-length parameter of the edge c(u) := f(u, 0). In this section, we
assume that the curvature function κ(u) of c(u) is positive for each u. Then the torsion function
τ(u) is well-defined. We can take the unit tangent vector e(u) := c′(u) (′ = d/du), and the unit
principal normal vector n(u) satisfying c′′(u) = κ(u)n(u). We set

b(u) := e(u)× n(u),

which is the binormal vector of c(u). Since fvv(u, 0) is perpendicular to e(u), we can write

(3.6) fvv(u, 0) = cos θ(u)n(u)− sin θ(u)b(u),

which is called the cuspidal direction. As defined in the introduction,

• the plane Π(c(u)) passing through c(u) spanned by n(u) and b(u) is the normal plane
of the space curve c(u),

• the section of the image of f by Π(c(u)) is a plane curve, which is called the sectional
cusp at c(u), and

• the vector fvv(u, 0) points in the tangential direction of the sectional cusp at c(u). So
we call θ(u) the cuspidal angle function.

• By using θ(u), the singular curvature κs and the limiting normal curvature κν along the
edge of f (cf. [16]) are given in (0.4).

The following fact is important:

Lemma 3.7 ([16]). The singular curvature is intrinsic. In particular, it is defined along the
singular curve with respect to a given Kossowski metric (cf. [4, (2.17)]). More precisely,

(3.7) κs(u) =
−Evv(u, 0)

2

holds, where (u, v) is the coordinate system as in Lemma 3.5.

Proof. As shown in [16, Proposition 1.8], κs is expressed as

(3.8) κs =
−FvEu + 2EFuv − EEvv

2E3/2λv
,

where (u, v) is a local coordinate system such that the u-axis is the singular set and ∂v points
in the null direction. If (u, v) is the local coordinate system as in Lemma 3.5, then F = 0,
λ = v

√
EG0 and E(u, 0) = 1 hold. So we can obtain (3.7). �

We now prove the following theorem under the assumption that the curve c is real analytic:

Theorem 3.8. We let U be an open subset of the uv-plane R2 containing J×{0} and ds2 a real
analytic Kossowski metric satisfying (3.4). Suppose that the curvature function κ of the curve
c is positive everywhere and the absolute value of the singular curvature κs(u) of ds2 along the
singular curve

J 3 u 7→ (u, 0) ∈ U
is less than κ(u) for each u ∈ J . Then there exist two real analytic generalized cuspidal edges
g+, g− defined on an open subset V (⊂ U) containing J ×{0} satisfying the following properties:

(1) The maps u 7→ g+(u, 0) and u 7→ g−(u, 0) parametrize C, which induce the same orien-
tation as c : J → R3.

(2) ds2 is the common first fundamental form of g+ and g−.
(3) g− is a faithful isomer of g+.
(4) If κ±ν : J → R are the limiting normal curvature functions of g±, then κ−ν = −κ+ν holds

on J .
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(5) If ds2 is non-parabolic at (u, 0), then g+ and g− have cuspidal edges at (u, 0).

Moreover, suppose that h : U → R3 is a generalized cuspidal edge whose first fundamental form
is ds2. If u 7→ h(u, 0) parametrizes C giving the same orientation as c : J → R3, then h
coincides with g+ or g−.

We prove this theorem from here on out, as a modification of the proof given in [14].

Remark 3.9. For each t0 ∈ J , we can take a connected local coordinate neighborhood
(V (t0);u, v) of (t0, 0) satisfying (1), (2) and (3) of Lemma 3.5. Since J is compact, we can
find finite points t1, ..., tk ∈ J such that {V (tj)}kj=1 covers the singular curve J ×{0}. It is suffi-
cient to prove Theorem 3.8 by replacing U by each V (tj) (j = 1, ..., k). (In fact, the assertion of
Theorem 3.8 contains the uniqueness of g± on each V (tj), and so g± obtained in V (tj) can be
uniquely extended to V (tj) ∪ V (tj+1) for each j = 1, ..., k − 1.)

The statements of Theorem 3.8 are properties of the maps g± which do not depend on the
choice of a local coordinate system containing J ×{0}. As explained in Remark 3.9, we may as-
sume the existence of a local coordinate system (U ;u, v) satisfying (1), (2) and (3) of Lemma 3.5,
without loss of generality. Then U contains a bounded closed interval I on the u-axis such that
I × {0} gives the singular set of ds2. We now show the existence of a real analytic generalized
cuspidal edge g(u, v) such that g(u, 0) = c(u), gv(u, 0) = 0 and

gu · gu = E, gu · gv = 0, gv · gv = G,

which is defined on a neighborhood of I ×{0} in U using the Cauchy-Kowalevski theorem. (We
remark that c(u) is parametrized as an arc-length parameter.) As in Lemma 3.5, we can write
G = v2G0/2. The following lemma holds:

Lemma 3.10. If there exists a real analytic generalized cuspidal edge g (= g±) as in Theorem 3.8,
then it is a solution of the following system of partial differential equations

(3.9)


gv = vζ,

ξv (= guv) = vζu,

ζv =
1

4

(
(ζ, gu, ξu)T

)−1(
(G0)v,−v(G0)u, 2r − v(G0)uu + 4vζu · ζu

)T
of unknown R3-valued functions g, ξ, ζ with the initial data

(3.10) g(u, 0) = c(u), ξ(u, 0) = c′(u)(= gu(u, 0)), ζ(u, 0) = x(u),

on I, where AT denotes the transpose of a 3× 3-matrix A and

(3.11) x(u) := cos θ(u)n(u)∓ sin θ(u)b(u), cos θ(u) :=
κs(u)

κ(u)
.

Remark 3.11. Since gv = vζ and ξv = vζu, we have ξv = vζu = guv. Thus, the initial condition
ξ(u, 0) = gu(u, 0) yields ξ(u, v) = gu(u, v).

Proof of Lemma 3.10. Since ds2 is real analytic, E and G are real analytic functions. Since
gv(u, 0) = 0, we can write

gv(u, v) = vζ(u, v),

where ζ(u, v) is a real analytic function defined on a neighborhood of I × {0} in R2. Then

(3.12) ζv · ζ =
(ζ · ζ)v

2
=

(G0)v
4

.

On the other hand, since

(3.13) vgu · ζ = gu · gv = 0,
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we have gu · ζ = 0. Differentiating this, we have

0 = v(ζ · gu)v = vζv · gu + vζ · guv = vζv · gu + gv · guv = vζv · gu +
Gu
2
.

Since G = v2G0/2, we have

(3.14) ζv · gu = −v
4

(G0)u.

We now obtain information on ζv · guu. It holds that

vζ · guu = gv · guu = (gv · gu)u − guv · gu = −guv · gu = −Ev
2
,

that is, we obtain

(3.15) ζ · guu = −Ev
2v
.

On the other hand, we have that

ζ · guu + vζv · guu = gvv · guu = (gvv · gu)u − gvvu · gu
= {(gv · gu)v − (gv · guv)}u − (guv · gu)v + guv · guv
= (−Gu/2)u − (Ev/2)v + guv · guv.

This, together with (3.15), gives the following identity

(3.16) ζv · guu =
Ev − vEvv

2v2
− v (G0)uu

4
+ vζu · ζu.

Since Ev(u, 0) = 0, the function Ev/v is a real analytic function, and the function

(3.17) r(u, v) :=
Ev − vEvv

v2
=

(
−Ev
v

)
v

is also real analytic. By (3.13), (3.14) and (3.16), we have the third equality of (3.9) under the
assumption that the 3× 3 matrix

M(u, v) := (ζ, gu, ξu)

is regular, where ξ := gu. The map g must have the initial data (3.10), where

x(u) = ζ(u, 0) = lim
v→0

gv(u, v)

v
= gvv(u, 0).

By (3.6), x(u) can be written in the form

(3.18) (x+(u) :=)x(u) = cos θ(u)n(u)− sin θ(u)b(u),

where θ(u) is the function defined by (3.11) and κ(u) (resp. κs(u)) is the curvature function of
c(u) (resp. the singular curvature function defined by (3.7)). In fact, since the singular curvature
κs of ds2 is less than κ on I, there exists a real analytic angular function θ : I → R satisfying
(3.11) and

0 < |θ(u)| < π

2
(u ∈ I).

Moreover, such a θ is determined up to a ±-ambiguity. In particular,

(3.19) (x−(u) :=)x(u) = cos θ(u)n(u) + sin θ(u)b(u)

is the other possibility. �
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We now return to the proof of Theorem 3.8. We have

(M(u, 0) =) (ζ(u, 0), gu(u, 0), guu(u, 0))

= (cos θ(u)n(u)− sin θ(u)b(u), e(u), κ(u)n(u)) .

Since the singular curvature of ds2 satisfies |κs| < κ on I, the function sin θ does not vanish on I.
Thus the matrix M(u, 0) is regular for each u ∈ I. We can then apply the Cauchy-Kowalevski
theorem (cf. [9]) for the system of partial differential equations (3.9) with initial data (3.10)
and obtain a unique real analytic solution (g, ξ, ζ) of (3.9) defined on a neighborhood of I ×{0}
in R2. Thus, we obtained the existence of real analytic generalized cuspidal edges g±(u, v)
corresponding to the initial data x±(u). By the above construction of these g±, the functions
±θ coincide with the cuspidal angles of g±, respectively. To accomplish the proof of Theorem 3.8,
we need to verify that the first fundamental forms of g± coincide with ds2. To show this, we
consider the case g = g+ with initial condition x(u) := x+(u), without loss of generality. The
third equation of (3.9) yields ζv · ζ = (G0)v/4, and hence we have (ζ · ζ −G0/2)v = 0. Since

ζ(u, 0) · ζ(u, 0)− G0(u, 0)

2
= x(u) · x(u)− 1 = 0,

the Cauchy-Kowalevski theorem yields that

(3.20) ζ · ζ =
G0

2
.

Hence, by the first equation of (3.9), we have

(3.21) gv · gv =
v2G0

2
= G.

On the other hand, using (3.9), we have

(ξ − gu)v = ξv − guv = vζu − (gv)u = vζu − (vζ)u = 0.

The initial condition ξ(u, 0) = gu(u, 0) yields that gu = ξ. Then guv = ξv = vζu and

guv · ζ = vζu · ζ = v
(ζ · ζ)u

2
=
v(G0)u

4

hold. Using this, we have

(gu · ζ)v = guv · ζ + gu · ζv =
v(G0)u

4
− v(G0)u

4
= 0.

Since gu(u, 0) · ζ(u, 0) = 0, we can conclude that gu · ζ = 0, that is,

(3.22) gu · gv = 0

is obtained. We now prepare the following:

Lemma 3.12. Suppose that (which is one of the conditions in (3.9))

ζv · ξu(= ζv · guu) =
2r − v(G0)uu + 4vζu · ζu

4
.

Then the initial condition (3.18) implies the following identity

(3.23)
Ev
2

+ vζ · ξu = 0.
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Proof. Using (3.20), we have that

(ζ · ξu)v = ζv · ξu + ζ · ξuv = ζv · ξu + ζ · guuv = ζv · ξu + ζ · (vζuu)

=
1

4

(
2r − v(G0)uu + 4vζu · ζu

)
+ ζ · (vζuu)

=
r

2
− v

2
(G0)uu + v(ζu · ζu + ζ · ζuu)

=
r

2
− v

4
(ζ · ζ)uu +

v

2
(ζ · ζ)uu =

r

2
.

By (3.17), (
ζ · ξu +

Ev
2v

)
v

= 0

holds. On the other hand, we have

ζ(u, 0) · ξu(u, 0) = x(u) · guu(u, 0) = (cos θ(u)n(u)− sin θ(u)b(u)) · c′′(u)

=
(
cos θ(u)n(u)− sin θ(u)b(u)

)
· (κ(u)n(u)) = κ(u) cos θ(u)

= κ(u)
κs(u)

κ(u)
= κs(u) =

−Evv(u, 0)

2
= lim
v→0

−Ev(u, v)

2v
.

So we obtain (3.23). �

We again return to the proof of Theorem 3.8. By (3.23), we have

1

2
(gu · gu)v = guv · gu = (gv · gu)u − gv · guu = −gv · guu =

Ev
2
.

This, with the initial condition gu(u, 0) · gu(u, 0) = c′(u) · c′(u) = 1 implies

(3.24) gu · gu = E.

By (3.24), (3.22) and (3.21), we can conclude that ds2 coincides with the first fundamental form
of g = g+, which implies the existence and uniqueness of g = g+. Replacing θ by −θ, we also
obtain the existence and uniqueness of g = g−. Since the cuspidal angles of g± are distinct, the
image of g− does not coincide with g+. Since the orientation of u 7→ g−(u, 0) is compatible with
that of the curve u 7→ g+(u, 0), the map g− is a faithful isomer of g+.

Here, we suppose ds2 is non-parabolic at (u, 0), then g+ and g− are wave fronts by [5, Propo-
sition 4 (o)]. Since ds2 is of type I, the criterion of cuspidal edges given in [5, Proposition 4 (i)]
yields that g+ and g− are both cuspidal edges.

Finally, the last assertion of Theorem 3.8 follows from the uniqueness of the system of partial
equations (3.9) as a consequence of the Cauchy-Kowalevski theorem, proving Theorem 3.8.

By the above proof of Theorem 3.8, we obtain the following:

Corollary 3.13. The cuspidal angle of g− is −θ, where θ is the cuspidal angle of g+. In
particular, g− is a faithful isomer of g+ since sin θ 6= 0.

We next prove the following:

Lemma 3.14. Let U be an open subset of the uv-plane R2 containing J ×{0}, and let ds2 be a
real analytic Kossowski metric of type I defined on U satisfying (1)–(3) of Lemma 3.5. Suppose
that the singular set of ds2 consists only of non-parabolic points. If there exist open subsets
Vi(⊂ U) (i = 1, 2) containing J × {0} and a diffeomorphism ϕ : V1 → V2 such that ϕ∗ds2 = ds2

and ϕ(u, 0) = (u, 0) hold for u ∈ J , then V1 = V2 and ϕ is the identity map.
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Proof. Let c(u) (u ∈ J) be a space curve satisfying the assumption of Theorem 3.8, and let g+
be one of cuspidal edges realizing ds2 as in Theorem 3.8. Since g+ ◦ϕ and g+ have the common
first fundamental form ds2, the last assertion of Theorem 3.8 yields that g+ ◦ ϕ coincides with
either g+ or g−. Since g+◦ϕ and g+ have the same image, they have a common cuspidal angle at
each point of C. So there exists a symmetry T of C such that T ◦ g+ ◦ϕ = g+. Suppose T is not
the identity map. Since ϕ(u, 0) = (u, 0), ϕ maps the domain D+ := {v > 0} to D− := {v < 0}.
However, it is impossible, because ϕ∗ds2 = ds2 and the Gaussian curvature on D+ takes the
opposite sign of that on D− (cf. [5, (1.14)]). Thus, T is the identity map and g+ ◦ϕ = g+ holds.
Since the singular set of g+ consists of cuspidal edge points, g+ is injective, and ϕ must be the
identity map. �

Proposition 3.15. Let ds2 be a real analytic Kossowski metric belonging to Kω∗ (R2
o). Suppose

that ϕ is a local Cω-diffeomorphism satisfying ϕ∗ds2 = ds2 and ϕ(o) = o which is not the identity
map. Then ϕ is an involution which reverses the orientation of the singular curve. Moreover,
such a ϕ is uniquely determined.

Proof. We can take a local coordinate system satisfying (1)–(3) of Lemma 3.5. Since ϕ(o) = o,
the fact that u 7→ (u, 0) is the arc-length parametrization with respect to ds2 yields that either
ϕ(u, 0) = (u, 0) or ϕ(u, 0) = (−u, 0) holds. If ϕ(u, 0) = (u, 0), then by Lemma 3.14, ϕ is the
identity map, a contradiction. So we have ϕ(u, 0) = (−u, 0). This means that ϕ reverses the
orientation of the singular curve. In this situation, we have ϕ ◦ ϕ(u, 0) = (u, 0). Applying
Lemma 3.14 again, ϕ◦ϕ is the identity map, that is, ϕ is an involution. We next suppose that ψ
is another local Cω-diffeomorphism satisfying ψ∗ds2 = ds2 and ψ(o) = o. Then ϕ◦ψ(u) = (u, 0)
holds, and Lemma 3.14 yields that ϕ ◦ ψ is the identity map. So ψ must coincide with ϕ. �

Corollary 3.16. Let ds2f be a real analytic Kossowski metric as the first fundamental form of

f ∈ Gω∗,3/2(R2
J ,R

3, C). Suppose that ϕ is a Cω-symmetry of ds2f , then it is effective and is an

involution reversing the orientation of the singular curve.

Proof. Without loss of generality, we may assume that the parameters (u, v) of f(u, v) satisfy
(1)-(3) of Lemma 3.5 for ds2f . Let P be the midpoint of C with respect to the arc-length

parameter. Then there exists c ∈ J such that f(c, 0) = P . Thinking o := (c, 0), we may regard f
belongs to Gω∗,3/2(R2

o,R
3, C). Since f ∈ Gω∗,3/2(R2

J ,R
3, C), by restricting f to a neighborhood of

o, the metric ds2f can be considered as an element of Kω∗ (R2
o) (cf. [5, (2) of Theorem A]). So the

symmetry ϕ of ds2f satisfies the desired property by Proposition 3.15. Since ϕ is real analytic,
the property is extended on a tubular neighborhood of the singular curve. �

Moreover, the following important property for symmetries of Kossowski metrics is obtained:

Theorem 3.17. Let p be a singular point of a real analytic Kossowski metric ds2 which is
an accumulation point of non-parabolic singular points of type I. Suppose that ϕ is a local Cω-
diffeomorphism fixing p satisfying ϕ∗ds2 = ds2. Then ϕ is an involution and reverses the
orientation of the singular curve if it is not the identity map.

Proof. Let γ(t) be a real analytic parametrization of the singular curve of the real analytic
Kossowski metric ds2 such that γ(0) = p. We let {pn}∞n=1 be a sequence of non-parabolic points
converging to p. Since γ is real analytic, the existence of such a sequence implies that, for
sufficiently small ε(> 0), γ((−ε, 0) ∪ (0, ε)) consists of non-parabolic points of type I. Then

s(t) :=

∫ t

0

√
ds2(γ′(u), γ′(u)) du (t ∈ (−ε, ε))
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is a monotone increasing function of t, giving a continuous parametrization of γ. Using this
parameter s, either ϕ ◦ γ(s) = γ(s) or ϕ ◦ γ(s) = γ(−s) holds. If the former case happens, then
applying Proposition 3.15 at a non-parabolic point γ(s) (s 6= 0), ϕ must be the identity map on
a neighborhood of γ(s). Since ϕ is real analytic, it must be the identity map on a neighborhood
of p.

We next consider the case that ϕ ◦ γ(s) = γ(−s). Then ϕ ◦ ϕ ◦ γ(s) = γ(s), and the above
argument implies that ϕ is an involution, proving the assertion. �

Proof of Theorem I. Let ds2f be the first fundamental form of f . Then ds2f is a Kossowski

metric of type I, by Proposition 3.1. Since f belongs to Gω∗ (R2
J ,R

3, C) (cf. (0.5)), the singular
curvature κs of ds2f is less than κ on J . By Theorem 3.8, there exist two generalized cuspidal

edges g+, g− ∈ Gω∗ (R2
J ,R

3, C) whose first fundamental forms coincide with ds2f . Since ds2f is the
first fundamental form of f , the last assertion of Theorem 3.8 yields that either f = g+ or f = g−
holds. Without loss of generality, we may set f = g+, then f̌ := g− is the desired isometric dual
of f . The remaining assertions for f ∈ Gω∗ (R2

o,R
3, C) follow from Lemma 0.1. �

Definition 3.18. For each f ∈ Gω∗ (R2
o,R

3, C) (resp. f ∈ Gω∗ (R2
J ,R

3, C)), we call the above
f̌ ∈ Gω∗ (R2

o,R
3, C) (resp. f̌ ∈ Gω∗ (R2

J ,R
3, C)) the isometric dual of f .

4. A representation formula for generalized cuspidal edges

We set J = [−l, l] (l > 0). Let c : J → R3 be an embedding with arc-length parameter whose
curvature function κ(u) is positive everywhere. We denote by e(u) := c′(u), and by C the image
of c. We let n(u) and b(u) be the unit principal normal vector field and unit binormal vector
field of c(u), respectively. We fix a sufficiently small δ(> 0) and consider a map given by

(4.1) f(u, v) := c(u) + (A(u, v), B(u, v))

(
cos θ(u) − sin θ(u)
sin θ(u) cos θ(u)

)(
n(u)
b(u)

)
,

where u ∈ J and |v| < δ. Here A(u, v), B(u, v) and θ(u) are Cr-functions, and satisfy

A(u, 0) = Av(u, 0) = 0, Avv(u, 0) 6= 0, B(u, 0) = Bv(u, 0) = Bvv(u, 0) = 0.

Then it can be easily checked that any generalized cuspidal edges along C are right equivalent
to one of such a map. Moreover, if Bvvv(u, 0) 6= 0, then f is a cuspidal edge along C. The
function θ(u) is called the cuspidal angle at c(u). Let κ(u) be the curvature of c(u). Then the
Cr-functions defined by

(4.2) κs(u) = κ(u) cos θ(u), κν(t) = κ(u) sin θ(u)

give the singular curvature and the limiting normal curvature respectively. The map germ f can
be determined by

(θ(u), A(u, v), B(u, v)).

We call these functions Fukui’s data.

Definition 4.1. In the expression (4.1), if

• u is an arc-length parameter of c,
• for each u ∈ J , the map (−δ, δ) 3 t 7→ (A(u, t), B(u, t)) ∈ R2 is a generalized cusp at
t = 0 (called a sectional cusp at u), and t gives a normalized half-arc-length parameter
(see the appendix),

then the expression (4.1) of f by setting v = t as the normalized half-arc-length parameter is
called the normal form of a generalized cuspidal edge.
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We now fix such a normal form f . We set

(4.3)

(
v2(u)
v3(u)

)
=

(
cos θ(u) − sin θ(u)
sin θ(u) cos θ(u)

)(
n(u)
b(u)

)
,

then we have

(4.4) f(u, t) = c(u) +A(u, t)v2(u) +B(u, t)v3(u).

Definition 4.2. Let (a, b) (a < b) be an interval on R, and δ ∈ (0,∞] a positive number.
A Cr-differentiable (r = ∞ or r = ω) quadruple (κ, τ, θ, µ̂) is called a fundamental data (or a
modified Fukui-data) if

• κ : (a, b)→ R is a Cr-function such that κ > 0,
• τ, θ : (a, b)→ R and µ̂ : (a, b)× (−δ, δ)→ R are Cr-functions.

Summarizing the above discussions, one can easily show the following representation for-
mula for generalized cuspidal edges, which is a mixture of Fukui’s representation formula as in
[3, (1.1)] for generalized cuspidal edges and a representation formula for cusps in the appendix
(cf. Lemma A.1):

Proposition 4.3. Let (κ, τ, θ, µ̂) be a given fundamental data and c(u) (u ∈ J) the space curve
with arc-length parameter whose curvature function and torsion function are κ(u) and τ(u).
Then,

(4.5) f(u, t) := c(u) + (A(u, t), B(u, t))

(
cos θ(u) − sin θ(u)
sin θ(u) cos θ(u)

)(
n(u)
b(u)

)
gives a generalized cuspidal edge written in a normal form along C := c(J), where (A,B) is
given by

(4.6) (A(u, t), B(u, t)) =

∫ t

0

v(cosλ(u, v), sinλ(u, v))dv, λ(u, t) :=

∫ t

0

µ̂(u, v)dv.

Moreover,

(1) θ gives the cuspidal angle of f along c,
(2) t 7→ µ̂(u, t) is the function given in (A.2) for the sectional cusp of f at u.

Furthermore, any generalized cuspidal edge along C is right equivalent to such an f constructed
in this manner (see also Remark 0.5).

Remark 4.4. Let c0(u) be a space curve parametrized by the arc-length parameter u defined
on an interval J := [−l, l] (l > 0), whose curvature function and torsion function are κ(u) and
τ(u), respectively. We assume that c0(0) = 0. Suppose that C := c0(J) admits a non-trivial
symmetry T . Since 0 is the midpoint of C and is fixed by T , we may assume that T ∈ O(3) and
set σ := det(T ) ∈ {1,−1}. Then c1(u) := Tc0(−u) is a space curve whose curvature function
and torsion function are κ(u) and στ(u) respectively. We denote by ei(u)(:= c′i(u)), ni(u) and
bi(u) (i = 0, 1) the unit tangent vector, unit principal normal vector and unit binormal vector
of ci(u), respectively. Differentiating T ◦ c0(u) = c1(u), we have

Te0(−u) = T ◦ c′0(−u) = −c′1(u) = −e1(u),

κ0(−u)Tn0(−u) = T ◦ c′′0(−u) = c′′1(u) = κ1(u)n1(u).

In particular, Te0(−u) = −e1(u), Tn0(−u) = n1(u) and κ0(−u) = κ1(u) hold, where
κi (i = 1, 2) is the curvature function of ci. Since σ := det(T ) ∈ {1,−1}, we have

b0 = e0 × n0 = (−Te1)× (Tn1) = −T (e1 × n1) = −σTb1.



78 A. HONDA, K. NAOKAWA, K. SAJI, M. UMEHARA, AND K. YAMADA

Using this, one can also obtain the relation −στ0(−u) = τ1(u), where τi (i = 1, 2) is the torsion
function of ci. We set

fi := ci + (Ai, Bi)

(
cos θi − sin θi
sin θi cos θi

)(
ni
bi

)
(i = 0, 1),

and suppose

A0(−u, t) = A1(u, t), B0(−u, t) = −σB1(u, t), θ0(−u) = −σθ1(u).

Then

T ◦ f0(−u, t)

= Tc0(−u) + (A0(−u, t), B0(−u, t))
(

cos θ0(−u) − sin θ0(−u)
sin θ0(−u) cos θ0(−u)

)(
Tn0(−u)
Tb0(−u)

)
= c1(u) + (A1(u, t),−σB1(u, t))

(
cos(−σθ1(u)) − sin(−σθ1(u))
sin(−σθ1(u)) cos(−σθ1(u))

)(
n1(u)
−σb1(u)

)
= c1(u) + (A1(u, t), B1(u, t))

(
cos θ1(u) − sin θ1(u)
sin θ1(u) cos θ1(u)

)(
n1(u)
b1(u)

)
= f1(u, t).

Thus, we obtain the relation f1(u, t) = T ◦ f0(−u, t). In particular, f1 has the same first funda-
mental form as f0. Moreover,

(a) if T ∈ SO(3), then the cuspidal angle of f1 takes opposite sign of that of f0. By the
uniqueness of the isometric dual of f0 (cf. Theorem 3.8), f̌0(u, t) = f1(u, t) = T ◦f0(−u, t)
holds, that is, f1 is the faithful isomer (i.e. the isometric dual) of f0.

(b) if T ∈ O(3) \ SO(3), then the cuspidal angle of f1 coincides with that of f0. Then
f0(u, t) = f1(u, t) = T ◦ f0(−u, t) holds (cf. Theorem 3.8), that is, the image of f0 is
invariant by T .

Remark 4.5. Let f(u, t) be a generalized cuspidal edge associated to the data

(κ(u), τ(u), θ(u), µ̂(u, t)).

Then f#(u, t) := f(−u, t) is also a generalized cuspidal edge along the same space curve as f but
with the reversed orientation. If we set c#(u) := c(−u), then c#(u) = f#(u, 0) holds. By a simi-
lar calculation like as in Remark 4.4, one can easily verify that (κ(−u),−τ(−u),−θ(−u), µ̂(−u, t))
gives the fundamental data of f#(u, t).

We next prove Theorem II in the introduction.

Proof of Theorem II. We fix f ∈ Gω∗∗(R
2
J ,R

3, C) arbitrarily. We denote by ds2f the first funda-

mental form of f . Since f is admissible, the singular curvature κs(u) satisfies (0.9), and so (0.7)
holds. By Theorem 3.8, there exist two distinct generalized cuspidal edges g± whose first funda-
mental forms coincide with ds2f such that g+ = f , and u 7→ g−(u, 0) has the same orientation as

that of u 7→ f(u, 0). Since f is admissible, the singular curvature κs is determined only by ds2f .

Thus g± belong to Gω∗∗(R
2
J ,R

3, C). By the proof of Theorem I, we know that f̌ := g− gives the
isometric dual of f .

On the other hand, we replace u with −u (that is, the orientation of C is reversed). Since f
is admissible, it holds that

0 < |κs(u)| ≤ min
u∈J

κ(u) < κ(−u) (u ∈ J).

So, applying Theorem 3.8 again, there exist two distinct generalized cuspidal edges

h± ∈ Gω∗∗(R
2
J ,R

3, C)
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such that u 7→ h±(u, 0) have the same orientation as that of u 7→ f(−u, 0). Then ds2f gives the

common first fundamental form of the generalized cuspidal edges h±. By (3.11), we may assume
that the cuspidal angle θ∗(u) (resp. −θ∗(u)) (θ∗(u)θ(u) > 0) of h+ (resp. h−) satisfies

cos θ∗(u) =
κs(u)

κ(−u)
.

Since the orientation of the singular curves of h± is opposite of that of f , the two maps h± are
non-faithful isomers of f . We set

f∗ := h+ (the inverse), and f̌∗ := h− (the inverse dual).

By the above Remark 4.5, the cuspidal angle of f#(u, v) := f(−u, v) is −θ(−u), the cuspidal
angle θ∗(u) takes opposite sign of that of f#(u, v). So the image of f does not coincide with
that of f∗. Hence f∗ is an isomer of f .

By our construction of f∗, (1), (2) and (3) are obvious. So we prove (4). We suppose that
the first fundamental form of a generalized cuspidal edge k ∈ Gω∗∗(R

2
I ,R

3, C) is isometric to ds2f .

(The case that k ∈ Gω∗ (R2
o,R

3, C) is obtained by Lemma 0.1.) Since the first fundamental form is
determined independently of a choice of local coordinate system, we have JC(f ◦ϕ) = JC(f)◦ϕ,
where ϕ is a diffeomorphism on a certain tubular neighborhood of J × {0}. So we may assume
that ds2k = ds2f without loss of generality. Then k must coincide with one of {g+, g−, h+, h−},
because of the uniqueness of the solution of (3.9) with initial condition (3.10). �

Definition 4.6. We call the above f∗ and f̌∗ the inverse and the inverse dual of
f ∈ Gω∗∗(R

2
J ,R

3, C), respectively.

We next give criteria of a given germ of generalized cuspidal edge to be a cuspidal edge,
cuspidal cross cap or 5/2-cuspidal edge in terms of the extended half-cuspidal curvature function
µ̂.

Proposition 4.7. Let f ∈ Gr(R2
J ,R

3, C) be the generalized cuspidal edge associated to a fun-
damental data (κ, τ, θ, µ̂). Then

(1) f gives a cuspidal edge along the u-axis if µ̂(u, 0) 6= 0,
(2) f gives a cuspidal cross cap at o if µ̂(0, 0) = 0 and µ̂u(0, 0) 6= 0,
(3) f gives a 5/2-cuspidal edge along the u-axis if µ̂(u, 0) = 0 and µ̂vv(u, 0) 6= 0.

The first and the second assertions have been proved in [3, Proposition 1.6].

Proof. We may assume that f is written in a normal form. The first assertion follows from (1)
of Proposition A.2. The second assertion follows from the criterion for cuspidal cross caps given
in [2], but can be proved much easier using (2) of [3, Proposition 4.4]. The third assertion is a
consequence of (2) of Proposition A.2. �

To compute the first and the second fundamental forms of f in terms of fundamental data,
the following Frenet-type formula for singular curves is convenient.

Lemma 4.8 (Izumiya-Saji-Takeuchi [7] and Fukui [3]). The following formula holds (cf. (4.3)):

(4.7)

e′

v′2
v′3

 =

 0 κ cos θ κ sin θ
−κ cos θ 0 τ − θ′
−κ sin θ −(τ − θ′) 0

 e
v2

v3

.
This formula can be rewritten as (cf. (4.3))e′

v′2
v′3

 =

 0 κs κν
−κs 0 κt
−κν −κt 0

 e
v2

v3

,
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which is the one given in Izumiya-Saji-Takeuchi [7, Proposition 3.1], where κt is the cusp-
directional torsion defined in [11] and has the expression (cf. [3, Page 7])

(4.8) κt = τ − θ′.

Using Lemma 4.8, one can easily obtain the following by a straightforward computation:

Proposition 4.9 (Fukui [3]). The first fundamental form ds2f = Edu2 + 2Fdudt+Gdt2 of f as

in (4.5) is given by

E = (1− (A cos θ +B sin θ)κ)2 + (Au + (θ′ − τ)B)2 + (Bu − (θ′ − τ)A)2,(4.9)

F = At(Au + (θ′ − τ)B) +Bt(Bu − (θ′ − τ)A), G = t2,

where κ, τ, θ are functions of u and A,B are functions of (u, t).

Proof. Differentiating f = c +Av2 +Bv3, we have

fu = (1− (A cos θ +B sin θ)κ)e + (Au + (θ′ − τ)B)v2 + (Bu − (θ′ − τ)A)v3,

ft = Atv2 +Btv3.

Since E = fu · fu, F = fu · ft and G = ft · ft, we obtain the assertion. �

We can write

µ̂(u, t) = µ0(u) + µ1(u)t+ µ2(u)t2 + µ3(u, t)t3,

and then Lemma A.1 yields that

A =
t2

2
− µ0(u)2

8
t4 − µ0(u)µ1(u)

10
t5 + t6a6(t, u),(4.10)

B =
µ0(u)

3
t3 +

µ1(u)

8
t4 +

2
(
−µ0(u)3 + 2µ2(u)

)
30

t5 + t6b6(t, u),(4.11)

where a6(t, u) and b6(t, u) denote Cr-functions.

Corollary 4.10. The Gaussian curvature K of ds2f satisfies

K(u, t) =
K0(u)

t
+K1(u) +K2(u)t+K3(u, t)t2,

where

K0 := µ0κν , K1 := −κsµ2
0 − κ2t + κνµ1,

K2 := −κνµ
3
0

2
+
κsκνµ0

2
− 3κsµ0µ1

2
+ κνµ2 − 2µ′0κt +

µ0

2
κ′t,

and K3(u, t) is a Cr-function. Here κs, κν and κt are defined in (0.4) and (4.8). Moreover,
µ0 = κc/2 (cf. (1.5)) and κ′t = dκt(u)/du.

Fukui [3, Theorem 1.8] has already determined the first two terms K0 and K1. So the essential
part of the above corollary is the statement for K2.

Proof. One can obtain this formula by computing the sectional curvature of ds2f , or alternatively,

one can get it by computing the second fundamental form of f as Fukui did in [3]. In each
approach, (4.10) and (4.11) play crucial roles. �

As a consequence of this corollary, the first term

K0 := µ0κν =
κcκν

2
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defined in [12] is an intrinsic invariant, which is called the product curvature. The second term
K1 is an intrinsic invariant. We consider the term K2. Since K0 = κcκν/2, and since µ0 is equal
to the cuspidal curvature κc, the fact that κs and κcκν are intrinsic yields that

K̃2 := −κνµ
3
0

2
− 3κsµ0µ1

2
+ κνµ2 − 2µ′0κt +

µ0

2
κ′t

is also an intrinsic invariant. Using this, we can prove the following assertion:

Proposition 4.11. Let f ∈ Gr(R2
J ,R

3, C) be the generalized cuspidal edge associated to a
fundamental data (κ, τ, θ, µ̂) satisfying sin θ 6= 0. Then

(1) f gives a cuspidal edge along the u-axis if K0(u) 6= 0,
(2) f gives a cuspidal cross cap at u = 0 if K0(0) = 0 and dK0(0)/du = 0, and
(3) f gives a 5/2-cuspidal edge along the u-axis if K0(u) = 0 and K2(u) 6= 0.

In particular, these conditions depend only on the first fundamental form of f .

Proof. Since sin θ(u) 6= 0, we have κν(u) 6= 0. Since K0 = µ0κν , K0(u) = 0 if and only if
µ0(u) = 0. Since µ0(u) = µ̂(u, 0)(= κc(u)), the first and second assertions follow from (1) and
(2) of Proposition 4.7, respectively. On the other hand, if µ0(= κc) is identically zero, then
K2 = κνµ2. So K2(u) 6= 0 if and only if µ2(u) 6= 0. Thus, the third assertion immediately follows
from (3) of Proposition 4.7. �

We now prove Fact 1.1 in the introduction.

Proof of Fact 1.1. Since sin θ 6= 0 if and only if κν 6= 0, the assertions (1) and (2) follow from
Theorem 3.8. We next prove (3). We remark that

Kω∗ (R2
o) = {ds2f ∈ KωI (R2

o) ; K0(0) 6= 0},
Kωp,∗(R

2
o) = {ds2f ∈ KωI (R2

o) ; K0(0) = 0, dK0(0)/du 6= 0},
Kωa,∗(R

2
o) = {ds2f ∈ KωI (R2

o) ; K0(u) = 0, K2(0) 6= 0}

hold in terms of our coordinates (u, t). We have shown the following (cf. Propositions 4.7 and
4.11).

• K0(0) 6= 0 if and only if µ0(0)(= κc(0)) 6= 0.
• K0(0) = 0 and dK0(0)/du 6= 0 if and only if µ0(0)(= κc(0)) = 0 and dµ0(0)/du 6= 0.
• K0(u) = 0 and K2(0) 6= 0 if and only if µ0(u) = 0 and µ2(0) 6= 0.

By Corollary 3.2, the following assertions hold:

• K̂(o) 6= 0 if and only if K0(0) 6= 0.

• K̂(o) = 0 and ∂K̂(o)/∂u 6= 0 if and only if K0(0) = 0 and dK0(0)/du 6= 0.

So the first fundamental form ds2f of f belongs to Kω∗ (R2
o) (resp. Kωp,∗(R

2
o)) if and only if

µ0(0)(= κc(0)) 6= 0 (resp. µ0(0)(= κc(0)) = 0 and dµ0(0)/du 6= 0). On the other hand, ds2f
belongs to Kωa,∗(R

2
o) if and only if µ0(u) = 0 and µ1(0) 6= 0. In fact, η := ∂/∂t gives the

null direction of f along the u-axis (as the singular curve of ds2f ), and we have (cf. (1.2))

dK(η) = Kt(u, 0) = K2(u). �

Finally, we consider the cuspidal edges with vanishing limiting normal curvature: A cuspidal
edge is called asymptotic if its first fundamental form is asymptotic (see Section 1), which is
equivalent to the condition that the cuspidal angle θ(u) of f is constantly equal to 0 or π along
its edge.
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If f is an asymptotic cuspidal edge, the singular curvature κs, limiting normal curvature κν
and cusp-directional torsion κt satisfy

(4.12) κs = εκ, κν = 0, κt = τ,

where ε := cos θ (∈ {1,−1}). So we get the following:

Proposition 4.12. Let f ∈ Gr3/2(R2
J ,R

3, C) be a cuspidal edge associated to a fundamental

data (κ, τ, θ, µ̂). If sin θ vanishes identically, then

(1) the limiting normal curvature κν vanishes identically,
(2) the first fundamental form of f is an asymptotic Kossowski metric, and
(3) the Gaussian curvature K of f can be extended across its singular set as a Cr-function.

Moreover, the sign of K coincides with the sign of (K1 =)− εκµ2
0 − τ2 whenever K1 6= 0, where

ε := cos θ.

As an application, we first consider the case K vanishes identically.

Corollary 4.13. Let f ∈ Gr3/2(R2
J ,R

3, C) be the cuspidal edge whose Gaussian curvature K

vanishes identically. Then C is a regular space curve whose torsion function does not vanish,
and f is the tangential developable of C. In particular, f has no isomers.

Proof. Since K vanishes identically, the identity −εκµ2
0 = τ2 holds along C. Since f is a cuspidal

edge, µ0 has no zeros, and the left hand side does not vanish. Thus, the torsion function τ of
C also has no zeros. Since f is a wave front, its principal directions along C are well-defined
(cf. [13, Proposition 1.6]). Moreover, each singular point of f is disjoint from umbilical set (cf.
[13, Proposition 1,10]), and the zero principal curvature direction is uniquely determined at each
point of C. Moreover, it can be easily seen that this direction must be the tangential direction
of C. Since K vanishes identically, f must be a ruled surface (cf. [13, Proposition 2.2]), so it
must be the tangential developable of C. �

Remark 4.14. The standard cuspidal edge f0(t) = (u2, u3, v) does not satisfy the assumption
of Corollary 4.13, since the singular set image is a line.

We next consider the case K > 0. If θ = π and µ0 is sufficiently large, then the Gaussian
curvature K near the singular set can be positive. So we can construct cuspidal edges with
K > 0. The following assertion is an immediate consequence of Proposition 4.12.

Corollary 4.15. Let f ∈ Gr3/2(R2
J ,R

3, C) be the cuspidal edge whose Gaussian curvature K is

bounded near singular set and positive, then it is asymptotic satisfying θ = π and κs < 0.

The negativity of κs has been pointed out in [16]. Although Theorem 3.8 does not cover the
case κν = 0, Brander [1] showed the existence of cuspidal edges in the case of K = 1 along a
given space curve C of κν > 0 using the loop group theory.

5. Relationships among isomers

In this section, we show several properties of isomers, and prove the last two statements in
the introduction. We fix a space curve c(u) satisfying c(0) = 0 which is parametrized by arc-
length defined on a closed interval J := [−l, l] (l > 0) whose curvature function κ(u) is positive
everywhere. We prove the following:

Proposition 5.1. Let f ∈ Gω∗,3/2(R2
J ,R

3, C). Then f̌ is congruent (cf. Definition 0.2) to f if

and only if

(1) C lies in a plane, or



DUALITY ON GENERALIZED CUSPIDAL EDGES 83

(2) C has a positive non-trivial symmetry and the first fundamental form ds2f has an effective

symmetry (cf. Definition 0.4).

Proof. We suppose that f̌ is congruent to f . By Remark 4.5, it is sufficient to consider the
case that C does not lie in any plane. By Remark 0.5, there exist an isometry T on R3 and a
diffeomorphism ϕ defined on a neighborhood of the singular curve of f such that

(5.1) T ◦ f ◦ ϕ = f̌ .

We consider the case that T fixes each point of C. Then C must lie in a plane, a contradiction.
So T is a non-trivial symmetry of C, that is, it reverses the orientation of C. We suppose that
T is a negative symmetry. Then (b) of Remark 4.4 implies that the image of f coincides with
that of T ◦ f . Since the image of f̌ is different from that of f , this case never happens. So T
must be a positive symmetry, and then ϕ gives an effective symmetry of ds2f .

Conversely, if C has a positive non-trivial symmetry and the first fundamental form ds2f has

an effective symmetry ϕ, then T ◦ f ◦ ϕ is a faithful isomer of f as seen in (a) of Remark 4.4.
Since such an isomer is uniquely determined (cf. Theorem 3.8), we have (5.1). �

Remark 5.2. Suppose that C is planar and S is the reflection with respect to the plane con-
taining C. For each f ∈ Gr∗,3/2(R2

J ,R
3, C), S ◦ f gives a faithful isomer of f . Moreover, if f is

real analytic (i.e. r = ω), then we have f̌ = S ◦ f (cf. Definition 3.18).

Example 5.3. Let f ∈ G∞∗ (R2
J ,R

3, C) be an admissible generalized cuspidal edge whose fun-
damental data is (κ, τ, θ, µ̂) (τ 6= 0). Suppose that κ, τ and θ are constant, and the extended
half-cuspidal curvature function µ̂ does not depend on u. In this case, without assuming the real
analyticity of f , we can show the existence of an isometry T ∈ SO(3) and an effective symmetry
ϕ of ds2f such that T ◦ f ◦ ϕ gives a faithful isomer of f as follows: In fact, in this case C has

the constant curvature κ and the constant torsion τ . Since τ 6= 0, C is a helix in R3 and there
exists a 180◦-rotation T ∈ SO(3) with respect to the principal normal line at 0 ∈ C such that
T (C) = C. By the first part of Proposition 5.10, it is sufficient to show that the first fundamental
form

ds2f = E(t)du2 + 2F (t)dudt+G(t)dt2

of f admits an effective symmetry ϕ as an involution. In fact, if such a ϕ exists, then (f̌ :=)T◦f◦ϕ
gives the isometric dual of f . In this situation, two functions A,B can be expressed as (cf.
(4.9) and (4.6)) A(t) := t2α(t) and B(t) := t3β(t), where α(t) and β(t) are Cr-functions. By
Proposition 4.9,

• E(t) is positive for each t,
• there exists a C∞-function F0(t) such that F (t) = t4F0(t), and G(t) = t2.

Setting

ω1 =
√
E(t)

(
du+

F (t)

E(t)
dt

)
, ω2 = t

√
E(t)− t6F0(t)2

E(t)
dt,

we have ds2f = (ω1)2 + (ω2)2. Moreover, if we set

(5.2) x(u, t) := u+

∫ t

0

F (v)

E(v)
dv, y(t) :=

∫ t

0

√
E(v)− v6F0(v)2

E(v)
dv.

Then we can take (x, y) as a new local coordinate system centered at (0, 0), and t can be
considered as a function of y. So we can write t = t(y), and

ds2f = E(y)dx2 + t(y)2dy2.
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So the local diffeomorphism ϕ : (x, y) 7→ (−x, y) gives an effective symmetry of ds2f .

Regarding the fact that the fundamental data of f is (κ, τ, θ, µ), we show in later that f̌ is
right equivalent to the cuspidal edge whose fundamental data of (κ, τ,−θ, µ), see Proposition
6.1.

Proof of Theorem III. Suppose that ds2f admits a symmetry ϕ. Then this symmetry is effective

(cf. Corollary 3.16). So, f ◦ ϕ and f̌ ◦ ϕ must be right equivalent to f̌∗ and f∗, respectively. In
particular, the number of right equivalence classes of f, f̌ , f∗, f̌∗ is two.

Conversely, we suppose that two of {f, f̌ , f∗, f̌∗} are right equivalent. Replacing f by f̌ , f∗,
f̌∗, we may assume that one of the right equivalent pair is f and the other is g ∈ {f̌ , f∗, f̌∗}.
Without loss of generality, we may assume that f is written in a normal form. Since f̌ cannot
be right equivalent to f , the map g must be right equivalent to f∗ or f̌∗, that is, there exists a
local diffeomorphism ϕ such that g = f ◦ϕ, which implies ϕ∗ds2f = ds2f . If ϕ is an identity map,

then g = f holds. However, it contradicts the fact that u 7→ f(u, 0) and u 7→ f∗(u, 0) = f̌∗(u, 0)
give mutually distinct orientations to C. So, by Corollary 3.16, ϕ must be an effective symmetry
of ds2f . �

Corollary 5.4. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C). Suppose that

(1) C is planar and does not admit any non-trivial symmetry at 0, and
(2) ds2f admits no effective symmetries (cf. Definition 0.4).

Then

• f̌ := S ◦ f holds, where S ∈ O(3) is the reflection with respect to the plane containing C,
• the isometric dual, inverse and the inverse dual are given by S ◦ f , f∗ and S ◦ f∗,

respectively. Moreover, f∗ is not congruent to f .

In particular, the four maps consist of two congruence classes.

Proof. As seen in Remark 5.2, f̌ := S ◦ f holds. We next prove the second assertion. Since C
lies in a plane, IC(f) = S ◦ f holds. By applying Theorem II, the right equivalence classes of
J−1C (JC(f)) are represented by {f, S ◦ f, f∗, S ◦ f∗}. It is sufficient to show that f∗ is not
congruent to f . If not, then, by Remark 0.5, there exist T ∈ O(3) and a diffeomorphism ϕ defined
on a neighborhood of the singular curve of f such that T ◦f∗ ◦ϕ = f . In particular, ϕ∗ds2f = ds2f
holds. By (1), T is not non-trivial. So, ϕ must be an effective symmetry, contradicting (2). �

We next consider the case that ds2f has an effective symmetry.

Proposition 5.5. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C). Suppose that

(1) C is non-planar and does not admit any non-trivial symmetry at 0,
(2) ds2f admits an effective symmetry ϕ.

Then f̌(:= IC(f)) is not congruent to f , and f̌ , f̌ ◦ϕ and f ◦ϕ give the isometric dual, inverse
and inverse dual, respectively.

Proof. By Proposition 5.1, f̌ is not congruent to f . Since f̌ ◦ ϕ (resp. f ◦ ϕ) has the same first
fundamental form as f , the fact that ϕ is effective yields that it coincides with either f∗ or f̌∗.
Since the cuspidal angle of f̌ ◦ ϕ (resp. f ◦ ϕ) takes the opposite sign (resp. the same sign) of
that of f (cf. Remark 4.5), we have f∗ = f̌ ◦ ϕ (resp. f̌∗ = f ◦ ϕ). �

Corollary 5.6. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C). Suppose that

(1) C is planar and does not admit any non-trivial symmetry at the origin 0,
(2) ds2f admits an effective symmetry ϕ.
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Then

• f̌ = S ◦ f holds, where S ∈ O(3) is the reflection with respect to the plane containing C.
• Moreover, S ◦ f, S ◦ f ◦ ϕ, f ◦ ϕ give the isometric dual, inverse and inverse dual,

respectively.

As a consequence, all of isomers are congruent to f .

Proof. As we have seen in Remark 5.2, f̌ = S ◦ f holds. Since S ◦ f ◦ ϕ (resp. f ◦ ϕ) has the
same first fundamental form as f , the fact that ϕ is effective yields it coincides with f∗ or f̌∗.
Since the sign of cuspidal angle of S ◦ f ◦ ϕ (resp. f ◦ ϕ) along the curve c#(u) := c(−u) takes

the opposite sign (resp. the same sign) of that of f , we have f∗ = S ◦ f ◦ ϕ (resp. f̌∗ = f ◦ ϕ).
Finally, it is obvious that the four maps are congruent. So the proposition is proved. �

We then consider the case that C has a non-trivial symmetry.

Proposition 5.7. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C). Suppose that

(1) C is non-planar and admits a non-trivial symmetry T ∈ O(3) at 0,
(2) ds2f does not admit any effective symmetries.

Then

• f̌ := IC(f) is not congruent to f , and
• T ◦ f̌ , T ◦ f are the inverse and inverse dual, respectively.

In particular, f, f̌ , T ◦ f̌ and T ◦ f consist of two congruence classes.

Proof. By Proposition 5.1, f̌ is not congruent to f . So the assertion can be shown easily. �

We get the following corollary.

Corollary 5.8. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C). Suppose that C lies in a plane and admits a non-

trivial symmetry T at the origin 0. Then f̌ = S ◦ f holds, and T ◦ f, S ◦ T ◦ f give the inverse
and the inverse dual of f , where S is a reflection with respect to the plane. As a consequence,
f, f̌ , f∗, f̌∗ belong to a single congruence class.

Proof. Obviously, f̌ = S ◦f holds (cf. Remark 5.2). On the other hand, T ◦f gives a non-faithful
isomer, and its isometric dual S ◦ T ◦ f also gives another non-faithful isomer. �

Figure 2. The four cuspidal edges given in Example 5.9

Example 5.9. We set

f(u, v) :=

(
ϕ(u, v) cosu− 1, ϕ(u, v) sinu, v3u+ 2v3 − v2

)
,
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where ϕ(u, v) := −v3u− 2v3 − v2 + 1. Then, it has cuspidal edge singularities along

c(u) (:= f(u, 0)) = (cosu− 1, sinu, 0).

By setting,

S :=

 1 0 0
0 1 0
0 0 −1

 , T :=

 1 0 0
0 −1 0
0 0 1

 ,

S ◦ f is the faithful isomer, and T ◦ f, TS ◦ f are non-faithful isomers. We remark that f is
associated to Fukui’s data (θ,A,B) given by

θ =
π

4
, A(u, v) :=

√
2v2, B(u, v) :=

√
2v3(u+ 2).

Finally, we consider the case that C and ds2f admit a symmetry and an effective symmetry,
respectively.

Proposition 5.10. Let f ∈ Gω∗∗,3/2(R2
J ,R

3, C). Suppose that

(1) C is non-planar and admits a non-trivial symmetry T ∈ O(3) at 0,
(2) ds2f admits an effective symmetry ϕ.

Then any isomer of f is right equivalent to one of f̌ , f̌ ◦ ϕ, f ◦ ϕ. Moreover,

• if T is positive (i.e. T ∈ SO(3)), then f̌ = T ◦ f ◦ ϕ, and
• if T is negative (i.e. T 6∈ SO(3)), then f̌ is not congruent to f .

Proof. We set g := T ◦ f ◦ ϕ. If T is positive, then g is a faithful isomer of f as shown in
Remark 4.4. On the other hand, if T is negative, then f̌ is not congruent to f by Proposition 5.1
and so it not congruent to f . �

Proof of Theorem IV. We suppose that C has no non-trivial symmetries, and also ds2f has no

symmetries. If two of {f, f̌ , f∗, f̌∗} are mutually congruent, replacing f by one of its isomers, we
may assume that f is congruent to g, where g is one of {f̌ , f∗, f̌∗}. By Proposition 5.1, we may
assume that g = f∗ or g = f̌∗. Suppose that g is congruent to f . Then (cf. Remark 0.5) there
exist a non-trivial symmetry T ∈ O(3) of C and a local diffeomorphism ϕ such that

T ◦ g ◦ ϕ = f.

Since C has no non-trivial symmetries, and ds2f has also no symmetries, ϕ is the identity map

and T is not a non-trivial symmetry. However, this contradicts the fact that u 7→ f(u, 0) and
u 7→ f∗(u, 0) = f̌∗(u, 0) give mutually distinct orientations to C. So we obtained (1).

The assertion (2) follows from Corollaries 5.4, 5.6, 5.8 and Propositions 5.5, 5.7, and 5.10, by
using the fact that any symmetries of ds2f are effective (cf. Corollary 3.16).

Finally, suppose that Nf = 1. We first consider the case that C lies in a plane. If C has no
non-trivial symmetries and ds2f has also no symmetries, then Nf = 2 holds by Corollary 5.4.

So either C or ds2f has a symmetry. If C has a symmetry, then Nf = 1 by Corollary 5.8 (this

corresponds to the case (a)). On the other hand, if C has no non-trivial symmetries and ds2f
also has a symmetry ϕ, then ϕ is effective (cf. Corollary 3.16). So, Corollary 5.6 yields that
Nf = 1. (This corresponds to the case (b). In fact, we denote by T0 the reflection with respect
to the plane containing C. We let T1 be a non-trivial symmetry of C. If T1 is positive, then (b)
holds obviously. On the other hand, if T1 is negative, then T0 ◦ T1 is a positive symmetry and
(b) holds.)

So we may assume that C does not lie in any planes. The assumption Nf = 1 implies f̌ must
congruent to f . By Proposition 5.1, this holds only when (c) happens, since C does not lie in
any planes. �
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6. Examples

One method to give a numerical approximation of a isometric dual g of a real analytic cuspidal
edge f is to determine the Taylor expansion of g(u, v) at v = 0 along the u-axis as a singular set
so that g = IC(f). In [14, Page 85], we give a numerical approximation of the isometric dual of

f0(u, v) =

(
u,−v

2

2
+
u3

6
,
u2

2
+
u3

6
+
v3

6

)
.

We denote by C the image of singular curve u 7→ f0(u, 0). In the figure of the isometric dual
g0 = IC(f0) given in [14, Figure 2], the surface g0 seems like it is lying on the almost opposite
side of f0. This is the reason why the cuspidal angle θ(u) of f0(u, v) is π/2 at u = 0. The red
lines of Figure 3 (left) indicates the section of f0, g0 at u = −1/4. The orange (resp. blue) surface
corresponds to f0 (resp. g0). We can recognize that the cuspidal angle takes value less than π/2,
that is, the normal direction of g0 is linearly independent of that of f0 at (u, v) = (−1/4, 0). On
the other hand, Figure 3 (right) indicates the images of the numerical approximations of the two
non-faithful isomers f1, g1 of f0.

Figure 3. The images of f0, g0 (left), and the images of f0, f1, g1 (right), where
f0 is indicated as the orange surfaces.

By Proposition 4.9, one can easily observe that the first fundamental form of f−θ does not
coincide with that of fθ. This means that the image of f−θ cannot coincide with that of fθ nor
f̌θ. However, one might expect the possibility that f−θ is an isomer of fθ. Here, we consider
the case that the space curve C has a non-trivial symmetry T . In this case, we know that
f, f̌ , T ◦ f, T ◦ f̌ are only the possibilities of isomers. Thus, if f−θ is an isomer of fθ, then
it must be congruent to either f or f̌ . We give here the following two propositions which are
related to one of these possibilities (by the following Proposition 6.1, Example 5.3 is just the
case that f−θ is right equivalent to f̌ .)

Proposition 6.1. Let C be a space curve which admits a non-trivial symmetry T ∈ SO(3) at
0, and let f := fθ ∈ G∞(R2

J ,R
3, C) be a generalized cuspidal edge as in the formula (4.1) such

that

• T ◦ f(−u, 0) = f(u, 0), and
• the cuspidal angle θ satisfies θ(u) = σθ(−u) where σ ∈ {+,−}.

Suppose that A(u, v) and B(u, v) satisfy one of the following two conditions:

(1) A(−u,−v) = A(u, v) and B(−u,−v) = −B(u, v) or
(2) A(−u, v) = A(u, v) and B(−u, v) = −B(u, v).
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Then fθ = T ◦ f−σθ ◦ ϕ holds, where ϕ(u, v) = (−u,−v) (resp. ϕ(u, v) = (−u, v)) in the case
of (1) (resp. (2)). In particular, f−θ is a right equivalent to f̌ if σ = +, and the image of f is
invariant under T if σ = −.

Proof. We consider the case σ = +, that is, θ(u) = θ(−u). Since T ◦c(−u) = c(u) and T ∈ SO(3)
(cf. Remark 4.4),

−Te(−u) = e(u), Tn(−u) = n(u), b(u) = −Tb(−u).

In the case of (1) (resp. (2)), we set ϕ(u, v) := (−u,−v) (resp. ϕ(u, v) := (−u, v)). Then
A ◦ ϕ(u, v) = A(u, v) and B ◦ ϕ(u, v) = −B(u, v) hold, and so

T ◦ fθ ◦ ϕ = c + (A,−B)

(
cos θ − sin θ
sin θ cos θ

)(
n
−b

)
= c + (A,B)

(
cos θ sin θ
− sin θ cos θ

)(
n
b

)
= f−θ,

proving the relation fθ = T ◦ f−σθ ◦ ϕ. The case θ(u) = −θ(−u) is proved in the same way.
We then consider the case that σ = 1. In this case, fθ = T ◦ f−θ ◦ ϕ holds. Since T is

an isometry of R3, we have ϕ∗ds2f = ds2g, where f := f−θ and g = f−θ. So g is isometric to
f . Since the cuspidal angle of g takes the opposite sign of that of f , the image of g does not
coincide with f . So g is a faithful isomer of f . Then the uniqueness of the faithful isomer of f
(cf. Theorem 3.8) yields that g is right equivalent to f̌ . �

Similarly, the following assertion holds.

Proposition 6.2. Let C be a space curve which admits a non-trivial symmetry T ∈ O(3)\SO(3)
at 0, and let f := fθ ∈ G∞(R2

J ,R
3, C) be a generalized cuspidal edge as in the formula (4.1)

such that

• T ◦ f(−u, 0) = f(u, 0), and
• the cuspidal angle θ satisfies θ(u) = σθ(−u), where σ ∈ {+,−}.

Suppose that A(u, v) and B(u, v) satisfy one of the following two conditions:

(1) A(−u,−v) = A(u, v) and B(−u,−v) = B(u, v),
(2) A(−u, v) = A(u, v) and B(−u, v) = B(u, v).

Then fθ = T ◦ fσθ ◦ ϕ holds, where ϕ(u, v) = (−u,−v) (resp. ϕ(u, v) = (−u, v)) in the case
of (1) (resp. (2)). In particular, f−θ is right equivalent to f̌ if σ = −, and the image of f is
invariant under T if σ = +.

Proof. Like as in the case of the proof of Proposition 6.1, −Te(−u) = e(u) and Tn(−u) = n(u)
hold. Since det(T ) = −1, we have Tb(−u) = b(u). In the case of (1) (resp. (2)), we set
ϕ(u, v) := (−u,−v) (resp. ϕ(u, v) := (−u, v)), then the relation fθ = T ◦ fσθ ◦ϕ is obtained like
as in the case of the proof of Proposition 6.1. One can also obtain the last assertion imitating
the corresponding argument in the proof of Proposition 6.1. �

Example 6.3. Let a, b be real numbers so that a > 0 and b 6= 0. Then

c(u) :=

(
a cos

(u
c

)
− a, a sin

(u
c

)
,
bu

c

)
(u ∈ R)

gives a helix of constant curvature κ := a/c2 and constant torsion τ := b/c2, where c :=
√
a2 + b2.

At the point 0 := c(0) on the helix, c satisfies T (c(R)) = c(R), where T ∈ SO(3) is the 180◦-
rotation with respect to the line passing through the origin 0 which is parallel to the principal
normal vector n(0). We set a = b = 1, θ = π/4. By setting

(A1, B1) := (v2, v3), (A2, B2) := (v2, v5), (A3, B3) := (v2, uv3).
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The surfaces gi,± := f±π/4 (i = 1, 2, 3) associated to the Fukui data (c,±π/4, Ai, Bi) correspond
to cuspidal edges, 5/2-cuspidal edges, and cuspidal cross caps, respectively. The first two cases
satisfy (1) of Proposition 6.1 and the third case satisfies (2) of Proposition 6.1. So gi,− (i = 1, 2, 3)
is a faithful isomer of gi,+.

Figure 4. The images of cuspidal edges g1,± (left), 5/2-cuspidal edges g2,±
(center) and cuspidal cross caps g3,± (right) given in Example 6.3.
(The orange surfaces correspond to gi,+ and the blue surfaces correspond to gi,−
for i = 1, 2, 3.)

Finally, we consider the case of fold singularities:

Example 6.4. We let c(u) be a C∞-regular space curve with positive curvature κ and torsion
τ . If we set

g±(u, v) := c(u) +
v2

2
(cos θn(u)∓ sin θb(u)),

then it can be easily checked that g− is a faithful isomer of g+, where θ is a constant. These two
surfaces can be extended to the following regular ruled surfaces:

g̃± = c(u) +
v

2
(cos θn(u)∓ sin θb(u)).

Appendix A. A representation formula for generalized cusps

A plane curve σ : J → R2 is said to have a singular point at t = t0 if σ̇(t0) = 0 (the dot
means d/dt). The singular point t = t0 is called a generalized cusp if σ̈(t0) 6= 0. In this situation,
it is well-known that

(i) t = t0 is a cusp if and only if σ̈(t0),
...
σ (t0) are linearly independent,

(ii) (cf. [15]) t = t0 is a 5/2-cusp if and only if σ̈(t0),
...
σ (t0) are linearly dependent and

3det(σ̈(t0), σ(5)(t0))σ̈(t0)− 10det(σ̈(t0), σ(4)(t0))
...
σ (t0) 6= 0.

From now on, we set t0 = 0. The arc-length parameter s(t) of σ given by

s(t) :=

∫ t

0

|σ̇(u)|du

is not smooth at t = 0, but if we set w := sgn(t)
√
|s(t)|, then this gives a parametrization of σ

near t = 0, which is called the half-arc-length parameter of σ near t = 0 in [17]. However, for
our purpose, as Fukui [3] did, the parameter

(A.1) v :=
√

2w = sgn(t)

(
2

∫ t

0

|σ̇(u)|du
)1/2

called the normalized half-arc-length parameter is convenient, since it is compatible with the
property |fvv| = 1 for adapted coordinate systems (cf. Definition 3.4) of generalized cuspidal
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edges. This normalized half-arc-length parameter can be characterized by the property that
v2/2 gives the arc-length parameter of σ. Then by [17, Theorem 1.1], we can write

(A.2) σ(v) =

∫ v

0

u(cos θ(u), sin θ(u))du, θ(v) =

∫ v

0

µ̂(u)du.

We need the following lemma, which can be proved by a straightforward computation.

Lemma A.1. Let v be the normalized half-arc-length parameter of the generalized cusp σ(w) at
w = 0. Then there exists an orientation preserving isometry T of R2 such that

(A.3) T ◦ σ(v) =
(v2

2
− µ2

0v
4

8
− µ0µ1v

5

10
,
µ0v

3

3
+
µ1v

4

8
+

(−µ3
0 + 2µ2)v5

30

)
+ o(v5),

where

µ̂(v) =

2∑
j=0

µjv
j + o(v3),

and o(v5) (resp. o(v3)) is a term higher than v5 (resp. v3).

Using this with (i) and (ii), one can easily obtain the following assertion:

Proposition A.2. Let v be the normalized half-arc-length parameter of the generalized cusp
σ(w) at w = 0. Then

(1) w = 0 is a cusp of σ if and only if µ0 6= 0, and
(2) w = 0 is a 5/2-cusp of σ if and only if µ0 = 0 and µ2 6= 0.

It is remarkable that the coefficient µ1 does not affect the criterion for 5/2-cusps. In this case,
µ0 = 0 holds, and µ1 and µ2 are proportional to the “secondary cuspidal curvature” and the
“bias” of σ(t) at t = 0, respectively. Geometric meanings for these two invariants for 5/2-cusps
can be found in [6, Proposition 2.2].

Acknowledgements. The authors thank Toshizumi Fukui and Wayne Rossman for valuable
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