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Dedicated to Terence Gaffney and Maria Ruas, on the occasion of their 70th birthday, and to Marcelo Saia, on
the occasion of his 60th birthday.

Abstract. Recently the authors investigated the Lipschitz triviality of simple germs of ma-
trices. In this work, we improve some previous results and we present an extension of an
integral closure result for the real setting. These tools are applied to investigate classes of
square matrices singularities classified by Bruce and Tari.

Introduction

The study of Lipschitz equisingularity has risen from works of Zariski [25], Pham [22] and
Teissier [23] and further developed by Parusiński ([18, 19]), Gaffney ([15, 12, 13]), Fernandes,
Ruas ([11]) and others.

In [17], Mostowski introduced a new technique for the study of this subject from the existence
of Lipschitz vector fields. In general, these vector fields are not canonical from the varieties.
Nevertheless, Gaffney [12] presented conditions to find a canonical Lipschitz vector field in the
context of a family of irreducible curves using the double structure, defined for ideals in [13] and
generalized for modules in [15].

Families of square matrices were first studied by Arnold in [2], where the parametrised invert-
ible matrices act by conjugation. Recently, many authors have presented a series of interesting
results about determinacy and classification using parametrised families or smooth changes of
coordinates in the source of the germ ([3], [4], [9], [10] and [21]).

More recently, Gaffney’s result was extended in [8], where the authors presented conditions
which ensure the canonical vector field is Lipschitz in the context of 1-unfoldings of singularities
of matrices, following the approach of Pereira and Ruas [24].

In this work we prove a real version of the result proved in [8] in order to investigate the
Lipschitz triviality in the real case. Finally, we study some deformations of simple singularities
classified by Bruce and Tari [3, 4] in the real and complex cases, using a similar approach as
that in [8].
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1. Notation and Background

We start with some notation. Let K be a field which is R or C and let R be the group of
diffeomorphisms Kr, 0→ Kr, 0. Let H denote the set of germs of smooth mappings

Kr, 0→ GLn(V )×GLp(W ),

and M the set of germs F : Kr, 0 → Hom(V ;W ). The set H can be endowed with a group
structure inherited from the product group in the target.

We define a notion of bi-Lipschitz equivalence between two matrices as in [20].

Definition 1.1. Let G = RnH be the semi-direct product of R and H. We say that two germs

F1, F2 : Kr, 0→ Hom(V ;W )

are G-Lipschitz equivalent if there exist a germ φ : (Kr, 0) → (Kr, 0) of a bi-Lipschitz homeo-
morphism and germs of continuous mappings X : (Kr, 0) → GLn(V ), Y : (Kr, 0) → GLp(W )
such that F1 = X−1(F2 ◦ φ−1)Y .

An element ofM can also be considered as a map Kr, 0→ KN , where we identify Hom(V ;W )
with the n× p matrices, and N = np.

It is not difficult to see that G is one of Damon’s geometric subgroups of K. As a consequence
of Damon’s result we can use the techniques of singularity theory, for instance, those concerning
finite determinacy (see [6], [21] and [4]).

It is possible to determine the tangent space to the orbit for the action of the group G on M .

Given a matrix F , we write Fx(i) for the matrix
∂F

∂xi
and we denote Er for the ring of smooth

functions Kr, 0→ K. So the tangent space could be viewed as an Er-submodule of EN spanned
by the set of matrices Ril (respectively Cjm) with lth row (respectively mth th column) the ith
row of F (respectively jth column) and with zeros elsewhere, for 1 ≤ i, l ≤ n and 1 ≤ j, m ≤ p
(see [6], [21] and [4]).

2. Real integral closure and Lipschitz Equisingularity

For the complex case, in [8] the authors obtained conditions so that the canonical vector field
defined in a family of simple germs of matrices is Lipschitz, depending of a specific inclusion of
ideals, involving the integral closure and the double of an ideal.

A new comprehension of the integral closure in the real case plays a key role in the proof of
Theorem 2.4. Let us recall this notion.

Let (An,mn) be the local ring of real analytic functions germs at the origin in Rn, and let
Ap

n be the An-free module of rank p. For a germ of a real analytic set (X,x), denote by AX,x

the local ring of real analytic function germs at (X,x).

Definition 2.1. Let I be an ideal of AX,x. An element h ∈ AX,x is in the real integral closure
of I, denoted I, if h ◦ φ ∈ φ∗(I)A1, for all real analytic path φ : (R, 0)→ (X,x).

For an algebraic definition of the real integral closure of an ideal one can see [5].
The key step to obtain the main results of [8] for the real case is the fact that the definition

of the real integral closure of an ideal is equivalent to the following formulation using analytic
inequalities.

Theorem 2.2 ([14]). Let I be an ideal of AX,x and h ∈ AX,x. Then: h ∈ I if and only if for
each choice of generators {fi} there exist a positive constant C and a neighborhood U of x such
that ‖ h(z) ‖≤ Cmax

i
‖ fi(z) ‖ for all z ∈ U .
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Let us recall some definitions and fix some notations.
Here we work with one parameter deformations and unfoldings. The parameter space is

denoted by Y = R ≡ R× 0.

Definition 2.3. Let h ∈ AN . The double of h is the element denoted by hD ∈ A2N defined by
the equation hD(z, z′) := h(z)− h(z′).

If h = (h1, ..., hr) is a map, with hi ∈ AN , for all i, then we define ID(h) as the the ideal of
A2N generated by {(h1)D, ..., (hr)D}.

We obtain a relation between the real integral closure of the double and the canonical vector
field induced by a one parameter unfolding to be Lipschitz.

Let F̃ : R × Rq −→ R × Rn be an analytic map, which is a homeomorphism onto its image,
and such that we can write F̃ (y, x) = (y, f̃(y, x)), with f̃(y, x) = (f̃1(y, x), ..., f̃n(y, x)). Let us
denote by

∂

∂y
+

n∑
j=1

∂f̃j
∂y
· ∂
∂zj

the vector field v : F̃ (R× Rq) −→ R× Rn given by

v(y, z) =

(
1,
∂f̃1

∂y
(F̃−1(y, z)), ...,

∂f̃n
∂y

(F̃−1(y, z))

)
.

Theorem 2.4. The vector field ∂
∂y +

n∑
j=1

∂f̃
∂y ·

∂
∂zj

is Lipschitz if and only if

ID

(∂F̃
∂y

)
⊆ ID(F̃ ).

Proof. Since we are working in a finite dimensional R-vector space then all the norms are equiv-
alent. To simplify the argument, we use the notation ‖.‖ for the maximum norm on R×Rq and
R× Rn, i.e., ‖(x1, ..., xn+1)‖ = maxn+1

i=1 {‖xi‖}.
Suppose the canonical vector field is Lipschitz. By hypothesis there exists a constant c > 0

such that ‖ v(y, z) − v(y′, z′) ‖≤ c ‖ (y, z) − (y′, z′) ‖ for all (y, z), (y′, z′) ∈ U , where U is an
open subset of F̃ (R× Rq).

Thus, given (y, x), (y′, x′) ∈ F̃−1(U), and applying the above inequality on these points, we
get ∣∣∣∣∣∣(∂f̃j

∂y
)D(y, x, y′, x′)

∣∣∣∣∣∣ ≤ c ‖ F̃ (y, x)− F̃ (y′, x′) ‖

for all j = 1, ...n. By the previous theorem, each generator of ID(∂F̃
∂y ) belongs to ID(F̃ ).

Now suppose that ID(∂F̃
∂y ) ⊂ ID(F̃ ). Using the hypothesis and Theorem 2.2, for each

j ∈ {1, ...n} there exists a constant cj > 0 and an open subset Uj ⊂ R× Rq such that∣∣∣∣∣∣(∂f̃j
∂y

)D(y, x, y′, x′)
∣∣∣∣∣∣ ≤ cj ‖ F̃ (y, x)− F̃ (y′, x′)

∣∣∣∣∣∣
for all (y, x), (y′, x′) ∈ Uj . Take U :=

n⋂
j=1

Uj , c := max{cj}nj=1 and V := F̃ (U), which is an open

subset of F̃ (R× Rq), since F̃ is a homeomorphism onto its image. Hence,

‖ v(y, z)− v(y′, z′) ‖≤ c ‖ (y, z)− (y′, z′) ‖
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for all (y, z), (y′, z′) ∈ V .

Therefore, the vector field ∂
∂y +

n∑
j=1

∂f̃j
∂y ·

∂
∂zj

is Lipschitz. �

Corollary 2.5. Suppose that F̃ : R × Rq −→ R × Hom(Rm,Rn) is an analytic map and a
homeomorphism onto its image, and suppose we can write F̃ (y, x) = (y, F (x) + yθ(x)).

a) The vector field ∂
∂y +

n∑
j=1

∂f̃
∂y ·

∂
∂zj

is Lipschitz if, and only if, ID(θ) ⊆ ID(F̃ ).

b) If θ is constant then the vector field ∂
∂y +

n∑
j=1

∂f̃
∂y ·

∂
∂zj

is Lipschitz.

3. Applications in some classes of square matrices

In this section we study if the Lipschitz condition is satisfied on the canonical vector field
naturally associated to the 1-unfolding of a G-simple square matrices singularities classified
in [3, 4]. Our goal is to obtain a better understanding of its behaviour. In [8] we consider
versal deformation of determinantal singularities of codimension 2 and we showed this behaviour
depends on the type of the normal form.

The next result presents a part of the classification of G-simple symmetric matrices obtained
by Bruce on Theorem 1.1 of [3].

Proposition 3.1. The G-simple germs F : C2 → Sym2 of rank 0 at the origin are given in the
following table.

Normal Form Discriminant

1.
(
yk x
x y`

)
k ≥ 1, ` ≥ 2 Ak+`+1

2.
(
x 0
0 y2 + xk

)
k ≥ 2 Dk+2

3.
(
x 0
0 xy + yk

)
k ≥ 2 D2k

4.
(
x yk

yk xy

)
k ≥ 2 D2k+1

5.
(
x y2

y2 x2

)
E6

6.
(
x 0
0 x2 + y3

)
E7

In the following result we establish conditions for the Lipschitz triviality of the canonical
vector field associated to the normal forms introduced in the above proposition. Differently
from the cases exhibited on [8], here we present examples with a different nature. Taking the
versal deformation of a normal formal we can find directions that produce Lipschitz trivial
deformations, Lipschitz deformations off the origin or non-Lipschitz.
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Proposition 3.2. Following the table of normal forms of G-simple germs F : C2 → Sym2

of rank 0 at the origin, the canonical vector field associated to the 1-parameter deformation F̃

induced by θ ∈ Sym2

TGeF
is Lipschitz in the following conditions:

1. For the normal form 1 of the table, if the canonical vector field associated to F̃ is Lipschitz
then θ can be written in the form

θ =

a0 +
k−1∑
i=r

aiy
i 0

0 b0 +
`−2∑
j=r

bjy
j


with ai, bj ∈ C and r = min{k, `}.

2. For the normal form 2 of the table, the canonical vector field associated to F̃ is Lipschitz
if and only of θ can be written in the form

θ =

a b

b
k−2∑
i=0

dix
i

 ,

with a, b, di ∈ C.

3. For the normal form 3 of the table, the canonical vector field associated to F̃ is Lipschitz
if and only of θ is constant.

4. For the normal form 4 of the table,the canonical vector field associated to F̃ is Lipschitz
if and only of ∂F̃

∂y = ∂F
∂y , i.e., θ can be written in the form

θ =

a b

b
k−1∑
j=0

bjx
j

 ,

with a, b, bj ∈ C.
5. For the normal form 5 of the table, the canonical vector field associated to the 1-parameter

deformation F̃ induced by θ ∈ Sym2

TGeF is Lipschitz if and only if the 1-jet type of F̃ and F
agree.

6. For the normal form 6 of the table, the canonical vector field associated to F̃ is Lipschitz
if and only of θ is constant.

The proof follows from the following lemmas.

Lemma 3.3. Let F : (C2, 0) → Sym2 be a G-simple germ of rank 0 at the origin whose dis-
criminant of type Ak+`−1. Let F̃ be a deformation induced by θ ∈ Sym2

TGeF . If the canonical vector
field associated to F̃ is Lipschitz then θ can be written in the form

θ =

a0 +
k−1∑
i=r

aiy
i 0

0 b0 +
`−2∑
j=r

bjy
j

 ,

with ai, bj ∈ C and r = min{k, `}.
In particular, in the case ` = k, the canonical vector field associated to F̃ is Lipschitz if and

only if θ is constant.
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Proof. The normal form of F is (
yk x
x y`

)
.

Then, the normal space
Sym2

TGeF
is generated by{(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
y 0
0 0

)
, ...,

(
yk−1 0

0 0

)
,

(
0 0
0 y

)
, ...,

(
0 0
0 y`−2

)}
.

If θ ∈ Sym2

TGeF
then θ is a C-linear combination of the above elements, i.e., there exist ai, bj ∈ C

such that

θ =


k−1∑
i=0

aiy
i 0

0
`−2∑
j=0

bjy
j

 .

Thus,

F̃ =

y
k + t

k−1∑
i=0

aiy
i x

x yk + t
k−2∑
j=0

bjy
j

 .

Notice that ID(F̃ ) is generated by

{x− x′, yk − y′k + t

k−1∑
i=1

ai(y
i − y′i), y` − y′` + t

`−2∑
j=1

bj(y
j − y′j)}

and ID(θ) is generated by

{
k−1∑
i=1

ai(y
i − y′i),

`−2∑
j=1

bj(y
j − y′j)

}
.

Consider the curve φ(s) = (sk+`, 2sk+`, 2s, sk+`, sk+`, s). Thus,

φ∗(ID(F̃ )) = 〈sk+`, (2k − 1)sk + sk+`
k−1∑
i=1

ai(2
i − 1)si, (2` − 1)s` + sk+`

`−2∑
j=1

bj(2
j − 1)sj〉,

which is contained in 〈sr〉. Since ID(θ) ⊆ ID(F̃ ), then〈
k−1∑
i=1

ai(2
i − 1)si,

`−2∑
j=1

bj(2
j − 1)sj

〉
⊆ 〈sr〉,

which finishes the proof. �

Lemma 3.4. Let F : (C2, 0)→ Sym2 be a G-simple germ of rank 0 at the origin whose discrim-
inant of type Dk+2, k ≥ 2. Let F̃ be a deformation induced by θ ∈ Sym2

TGeF . Then the canonical
vector field associated to F̃ is Lipschitz if and only of θ can be written in the form

θ =

a b

b
k−2∑
i=0

dix
i

 ,

with a, b, di ∈ C.
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Proof. The normal form of F is (
x 0
0 y2 + xk

)
.

Then, the normal space
Sym2

TGeF
is generated by

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 y
y 0

)
,

(
0 0
0 1

)
,

(
0 0
0 x

)
, ...,

(
0 0
0 xk−2

)}
.

Thus, we can write

θ =

 a b+ cy

b+ cy
k−2∑
i=0

dix
i

 ,

with a, b, c, di ∈ C,

ID(θ) = 〈c(y − y′),
k−2∑
i=1

di(x
i − x′i)〉

and

ID(F̃ ) = 〈x− x′, tc(y − y′), y2 − y′2 + xk − x′k + t

k−2∑
i=1

(xi − x′i)〉.

Consider the curve φ(s) = (s, 2s2, 2s, s, s2, s). Notice that

φ∗(ID(F̃ )) = 〈s2, cs2, 3s2 + (2k − 1)s2k + s

k−2∑
i=1

di(2
i − 1)si〉 ⊆ 〈s2〉.

Suppose the canonical vector field is Lipschitz, i.e., ID(θ) ⊆ ID(F̃ ). Then,

cs = φ∗(c(y − y′)) ∈ 〈s2〉

and so c = 0.

Conversely, if c = 0 then ID(θ) = 〈
k−2∑
i=1

di(x
i − x′i)〉 ⊆ 〈x− x′〉 ⊆ ID(F̃ ). �

Lemma 3.5. Let F : (C2, 0) → Sym2 be a G-simple germ of rank 0 at the origin whose dis-
criminant of type D2k, k ≥ 2. Let F̃ be a deformation induced by θ ∈ Sym2

TGeF . Then the canonical
vector field associated to F̃ is Lipschitz if and only of θ is constant.

Proof. The normal form of F is (
x 0
0 xy + yk

)
.

Then, the normal space
Sym2

TGeF
is generated by{(

1 0
0 0

)
,

(
0 0
0 1

)(
0 1
1 0

)
,

(
y 0
0 0

)
, ...,

(
yk−2 0

0 0

)
,

(
0 0
0 y

)
, ...,

(
0 0
0 yk−1

)}
.

So we can write

θ =


k−2∑
i=0

aiy
i a

a
k−1∑
j=0

bjy
j

 ,
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for some a, ai, bj ∈ C, ID(θ) = 〈
k−2∑
i=1

ai(y
i − y′i),

k−1∑
j=1

bj(y
j − y′j)〉 and

ID(F̃ ) = 〈x− x′ + t

k−2∑
i=1

ai(y
i − y′i), xy − x′y′ + yk − y′k + t

k−1∑
j=1

bj(y
j − y′j)〉.

Consider the curve φ(s) = (sk, 2sk, 2s, sk, sk, s). Then

φ∗(ID(F̃ )) = 〈sk + sk
k−2∑
i=1

ai(2
i − 1)si, 3sk+1 + (2k − 1)sk + sk

k−1∑
j=1

bj(2
j − 1)sj〉 ⊆ 〈sk〉.

If the canonical vector field is Lipschitz then
k−2∑
i=1

ai(2
i − 1)si and

k−1∑
j=1

bj(2
j − 1)sj belong to

〈sk〉. Hence, ai = 0 and bj = 0 for all i and j. Therefore, θ is constant.
�

Lemma 3.6. Let F : (C2, 0)→ Sym2 be a G-simple germ of rank 0 at the origin whose discrim-

inant of type D2k+1, k ≥ 2. Let F̃ be a deformation induced by θ ∈ Sym2

TGeF
. Then the canonical

vector field associated to F̃ is Lipschitz if and only of
∂F̃

∂y
=
∂F

∂y
, i.e., θ can be written in the

form

θ =

a b

b
k−1∑
j=0

bjx
j

 ,

with a, b, bj ∈ C.

Proof. The normal form of F is (
x yk

yk xy

)
.

Then, the normal space
Sym2

TGeF
is generated by{(

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
,

(
y 0
0 0

)
, ...,

(
yk−1 0

0 0

)
,

(
0 0
0 x

)
, ...,

(
0 0
0 xk−1

)}
.

Thus, we can write

θ =

a+
k−1∑
i=1

aiy
i b

b
k−1∑
j=0

bjx
j

 ,

with a, ai, b, bj ∈ C,

ID(θ) = 〈
k−1∑
i=1

ai(y
i − y′i),

k−1∑
j=1

bj(x
j − x′j)〉

and

ID(F̃ ) = 〈x− x′ + t

k−1∑
i=1

ai(y
i − y′i), yk − y′k, xy − x′y′ + t

k−1∑
j=1

bj(x
j − x′j)〉.
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Consider the curve φ(s) = (sk, 2sk, 2s, sk, sk, s). Then

φ∗(ID(F̃ )) = 〈sk + sk
k−1∑
i=1

ai(2
i − 1)si, (2k − 1)sk, 3sk+1 + sk

k−1∑
j=1

bj(2
j − 1)skj〉 ⊆ 〈sk〉.

If ID(θ) ⊆ ID(F̃ ) then
k−1∑
i=1

ai(2
i−1)si ∈ 〈sk〉, hence ai = 0 for all i ∈ {1, ..., k−1}. Conversely,

if ai = 0, for all i ∈ {1, ..., k − 1} then ID(θ) = 〈
k−1∑
j=1

bj(x
j − x′j)〉 ⊆ 〈x− x′〉 ⊆ ID(F̃ ). �

Lemma 3.7. Let F : (C2, 0)→ Sym2 be a G-simple germ of rank 0 at the origin with discrimi-
nant of type E6. Then the canonical vector field associated to the 1-parameter deformation F̃

induced by θ ∈ Sym2

TGeF
is Lipschitz if and only if the 1-jet type of F̃ and F agree.

Proof. The normal form of F is (
x y2

y2 x2

)
.

Then, the normal space
Sym2

TGeF
is generated by

{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
,

(
y 0
0 0

)
,

(
0 0
0 y

)
,

(
0 0
0 y2

)}
.

If θ ∈ Sym2

TGeF
induces a non-trivial deformation F̃ then we can write

θ(x, y) =

(
a1 + a3y + a4y

2 0
0 a2 + a5y + a6y

2

)
.

Thus

F̃ =

(
x+ t(a1 + a3y + a4y

2) y2

y2 x2 + t(a2 + a5y + a6y
2)

)
.

Notice that ID(θ) = 〈a3(y − y′) + a4(y2 − y′2), a5(y − y′) + a6(y2 − y′2)〉.
Suppose the 1-jet type of F̃ and F agree. Then a3 = a5 = 0 and in this case

ID(θ) = 〈a4(y2 − y′2), a6(y2 − y′2)〉.

Since y2 − y′2 ∈ ID(F̃ ) then ID(θ) ⊆ ID(F̃ ) and the canonical vector field is Lipschitz.
Conversely, if the canonical vector field is Lipschitz then a3 = a5 = 0. In fact, we are assuming

that ID(θ) ⊆ ID(F̃ ).
We have ID(F̃ ) is generated by

{y2 − y′2, x− x′ + t(a3(y − y′) + a4(y2 − y′2)), x2 − x′2 + t(a5(y − y′) + a6(y2 − y′2))}.

Consider the curve φ(s) = (s, 2s3, 2s2, s, s3, s2). Then we have that

φ∗(ID(F̃ )) = 〈3s4, s3 + s(a3s
2 + 3a4s

4), 3s6 + s(a5s
2 + 3a6s

4)〉 ⊆ 〈s3〉.

Since φ∗(ID(θ)) ⊆ φ∗(ID(F̃ )) ⊆ 〈s3〉 then φ∗(a3(y − y′) + a4(y2 − y′2)) = a3s
2 + 3a4s

4 ∈ 〈s3〉
which implies that a3s

2 ∈ 〈s3〉, hence a3 = 0. Analogously, using the same curve, we prove that
a5 = 0. �
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Lemma 3.8. Let F : (C2, 0) → Sym2 be a G-simple germ of rank 0 at the origin whose dis-

criminant of type E7. Let F̃ be a deformation induced by θ ∈ Sym2

TGeF
. Then the canonical vector

field associated to F̃ is Lipschitz if and only of θ is constant.

Proof. The normal form of F is (
x 0
0 x2 + y3

)
.

Then, the normal space
Sym2

TGeF
is generated by{(

1 0
0 0

)
,

(
0 0
0 1

)(
0 1
1 0

)
,

(
0 0
0 y

)
,

(
y 0
0 0

)
,

(
0 y
y 0

)
,

(
0 y2

y2 0

)}
.

So we can write

θ =

(
a1 + a5y a3 + a6y + a7y

2

a3 + a6y + a7y
2 a2 + a4y

)
,

for some ai ∈ C,

ID(θ) = 〈a5(y − y′), a4(y − y′), a6(y − y′) + a7(y2 − y′2)〉
and

ID(F̃ ) = 〈x− x′ + ta5(y − y′), t(a6(y − y′) + a7(y2 − y′2)), x2 − x′2 + y3 − y′3 + ta4(y − y′)〉.
Consider the curve φ(s) = (s2, 2s3, 2s, s2, s3, s). Thus,

φ∗(ID(F̃ )) = 〈s3 + a5s
3, a6s

3 + 3a7s
4, 3s6 + 7s3 + a4s

3〉 ⊆ 〈s3〉.
If the canonical vector field is Lipschitz then a5s, a4s, a6s + 3a7s

2 ∈ 〈s3〉 which implies that
a4 = a5 = a6 = a7 = 0. Therefore, θ is constant. �

As in [8], the canonical vector field associated to the 1-parameter deformation F̃ of the normal
forms presented in [3] induced by θ ∈ Sym3

TGeF is Lipschitz if and only if the 1-jet type of F̃ and F
agree. The proof of the next result is analogous to the proof of the main result of [8].

Proposition 3.9. For all G-simple germs F : Cr → Sym3 of rank 0 at the origin we have that

the canonical vector field associated to the 1-parameter deformation F̃ induced by θ ∈ Sym3

TGeF
is

Lipschitz.

Proof. Suppose that F is of 1-jet-type of the form in the tables in items (5) and (6) of Theorem 1.1

from [5]. Since θ ∈
Mat(3)(Or)

TGF
, the r order 1 entries of the matrix F stay unperturbed, thus the

differences of the monomial generators of the maximal ideal are in ID(F̃ ). In particular the ideal
I∆ from the diagonal satisfies the inclusion I∆ ⊆ ID(F̃ ). Let θi, i ∈ {1, ..., 6} be the components
of θ. Notice that every (θi)D vanishes on the diagonal ∆ which implies that all the generators
of ID(θ) belong to I∆. Therefore, ID(θ) ⊆ I∆ ⊆ ID(F̃ ) and Proposition 3.4 of [8] ensures the
canonical vector field is Lipschitz.

�

Remark 3.10 ([3], Remark 1.2.). In the cases when r = 2 and n = 2, 3 the G-codimension of
the germs and the Milnor number of the discriminant coincide.

The next result is an application of the results of the previous section for the real case. The
proof follows the same steps of Theorem 2.8 of [8].
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Theorem 3.11. Consider the G-simple germs F : Rr → Hom(Rn,Rn) of rank 0 at the origin,
classified in Theorem 1.1 of [4], and consider the semi-universal unfolding

F̃ : R× Rn → R×Hom(Rn,Rn),

where θ ∈ Matn(Ar)

TGeF
.

If the ideal of 1-minors of F defines a reduced point then the canonical vector field is Lipschitz.

Proof. Since the ideal of 1-minors of F defines a reduced point and θ ∈ Matn(Ar)

TGeF
, then the r

order 1 entries of F stay unperturbed, thus the differences of the monomial generators of the
maximal ideal are in ID(F̃ ). Consequentely, I∆ ⊆ ID(F̃ ). Let θij be the components of θ,
i, j ∈ {1, . . . , n}. Clearly all (θij)D vanish on ∆. Hence, ID(θ) ⊆ I∆ and the proof is done by
Corollary 2.5. �

Remark 3.12. In [20], the author obtained sufficient conditions for topological triviality of
1-parameter deformations of weighted homogeneous matrix M (see Proposition 6.1 and
Proposition 6.2). Considering the action defined in the Definition 1.1, the triviality condition
is related to the tangent space to the G-orbit of M . These conditions ensure that the canonical
vector field is integrable.

At this point, one way to continue our study is to show that the homeomorphism obtained
by integration of the canonical Lipschitz vector fields gives the bi-Lipschitz equivalence of the
members of the respective family of square matrix map-germs according to Definition 1.1.
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