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NEARBY CYCLES FOR PARITY SHEAVES ON A DIVISOR WITH

SIMPLE NORMAL CROSSINGS

PRAMOD N. ACHAR AND LAURA RIDER

Abstract. The first author recently introduced a “nearby cycles formalism” in the framework
of chain complexes of parity sheaves. In this paper, we compute this functor in two related

settings: (i) affine space, stratified by the action of a torus, and (ii) the global Schubert variety

associated to the first fundamental coweight of the group PGLn. The latter is a parity-sheaf
analogue of Gaitsgory’s central sheaf construction.

1. Introduction

In [A], the first author introduced a “nearby cycles formalism” associated to an algebraic
map f : X → A1 in the framework of (chain complexes) of parity sheaves. This entails the
construction of a functor

Ψf : Dmix
Gm

(Xη,k)→ Dmix(X0,k)

with properties resembling those of the classical unipotent nearby cycles functor [B, R], including
a canonical nilpotent endomorphism NΨ : Ψf (F)→ Ψf (F)〈2〉, called the monodromy endomor-
phism. (See Section 2 below for a review of the notation and setup.) It is expected that this
functor will make it possible to adapt Gaitsgory’s construction of “central sheaves” [Ga] to the
setting of the mixed modular derived category [AR1], which has found numerous applications in
modular geometric representation theory (see [AR3, §7.1]).

In this paper, we compute the first nontrivial examples of the nearby cycles functor Ψf , in
the following two related settings:

• X = An, and f : X → A1 is the map f(x1, . . . , xn) = x1 · · ·xn. In this case, the special
fiber X0 is the union of the coordinate hyperplanes in An, and hence a divisor with
simple normal crossings.

• X = Gr $̌1 , the “global Schubert variety” associated to the first fundamental coweight
$̌1 for the group PGLn, as defined in [Z]. This space is equipped with a map f : X → A1

such that f−1(t) for any t 6= 0 is identified with the minuscule Schubert variety Gr$̌1
in

the affine Grassmannian for PGLn, isomorphic to Pn−1. The special fiber X0 is a subset
of the affine flag variety Fl, known as the “central degeneration of Gr$̌1

.”

These two cases are closely related: there is an open affine subset of Gr $̌1
that can be identified

with An in a way that is compatible with the map to A1. This fact is used in a crucial way in
this paper: we compute the nearby cycles complex on An directly from the definition, and then
we use this open embedding to deduce the result on Gr $̌1 .

An explicit description of the nearby cycles object Ψf (kXη
{n}) is given in Sections 6 and 9.

From this description, one can see that Ψf (kXη
{n}) is, in fact, a perverse sheaf. (Unlike in the

classical case, the t-exactness of the mixed nearby cycles functor of [A] is not known in general.)

P.A. was partially supported by NSF Grant Nos. DMS-1500890 and DMS-1802241. L.R. was supported by
NSF Grant No. DMS-1802378.
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Moreover, the canonical nilpotent endomorphism NΨ : Ψf (kXη
{n})→ Ψf (kXη

{n})〈2〉 gives rise
to a filtration

M•Ψf (kXη
{n}),

called the monodromy filtration. (See Section 10 for details.)
The following result describes the associated graded of this filtration. One can also read off

multiplicities of composition factors from this statement.

Theorem 1.1. Let X denote either An or Gr $̌1
, as above. The associated graded of the mon-

odromy filtration on the mixed perverse sheaf Ψf (kXη
{n}) is given by

grMk Ψf (kXη
{n}) =

⊕
p,q≥0
p−q=k

⊕
I([n]

|I|=n−1−p−q

kXI
{|I|}〈k − 1〉.

In particular, each component of this associated graded is pure, so the monodromy filtration
coincides with (a shift of) the weight filtration on Ψf (kXη

{n}) (in the sense of [AR2]). For

an analogous statement in the context of classical (`-adic) nearby cycles, see [I, §3.4], as well
as [RZ, S]. See also [G2, Proposition 9.1].

Contents. Section 2 gives a brief review of the nearby cycles formalism from [A]. In Section 3,
we fix notation for the case of An, and in Sections 4–6, we carry out the nearby cycles calculation
in this case. In Sections 7 and 8, we study the geometry of Gr $̌1

. The nearby cycles calculation
in this case is done in Section 9. Section 10 is devoted to the study of the monodromy filtration
(on either An or Gr $̌1

). Finally, Section 11 contains a few explicit examples.

Acknowledgments. The complex of parity sheaves ZGr$̌1 described in Section 9 (see also
Section 11) has been discovered and studied independently by B. Elias [E] from a rather different
perspective. We are grateful to him for keeping us informed about his work.

2. Background on the nearby cycles formalism

2.1. Graded parity sheaves. Let k be a complete local principal ideal domain. Throughout
the paper, we will consider sheaves with coefficients in k. Let R denote the Gm-equivariant
cohomology of a point:

(2.1) R = H•Gm
(pt;k) = k[ξ].

Here, ξ ∈ H2
Gm

(pt;k) is the canonical generator, as in [A, §2.2]. We regard this as a bigraded
ring by setting deg ξ = (2, 2).

Let X be a complex algebraic variety, and let H be an algebraic group acting on X. Suppose
that there is an action of Gm on H by group automorphisms, so that we may form the group
Gm n H, and that the H-action on X extends to an action of Gm n H. Assume that X is
equipped with a fixed algebraic stratification (Xs)s∈S satisfying the assumptions of [A, §2.2]. In
particular, for each stratum Xs, there is a unique (up to isomorphism and shift) indecomposable
Gm nH-equivariant parity sheaf1 supported on Xs.

As in [A], it is useful to distinguish the Gm-equivariance from the H-equivariance. For this
reason, the additive category of Gm n H-equivariant parity sheaves on X is denoted

1We recall that in [JMW], a distinction is made between “parity complexes” and “parity sheaves”; the latter

are indecomposable by definition. We prefer to call all these objects “parity sheaves,” and to use the adjective

“indecomposable” when needed.
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by ParityGm
(X/H,k). Following [AR1, A], we denote the cohomological shift functor in

ParityGm
(X/H,k) by {1}. A graded parity sheaf is a formal expression of the form

F =
⊕

i∈Z F i[−i],

where F i ∈ ParityGm
(X/H,k), and where only finitely many of the F i are nonzero. Recall that

for a graded parity sheaf, the Tate twist 〈1〉 is defined by

F〈1〉 = F{−1}[1].

If F and G are graded parity sheaves, we define Hom(F ,G) to be the bigraded k-module given
by

Hom(F ,G)ij =
⊕
p,q∈Z

q−p=i−j

Hom(Fp,Gq{j}).

This is naturally a bigraded R-module. A morphism of graded parity sheaves φ : F → G is just
an element φ ∈ Hom(F ,G)0

0. Note that a homogeneous element ψ ∈ Hom(F ,G)ij of bidegree
(i, j) can be thought of as a morphism ψ : F → G[i]〈−j〉.

2.2. Three derived categories. Let r and ξ̄ be indeterminates, and let

R∨ = k[r] and Λ = k[ξ̄]/(ξ̄2).

We regard these as bigraded rings by setting deg r = (0,−2) and deg ξ̄ = (1, 2).
The theory developed in [A] involves three triangulated categories, briefly summarized in the

table below. In all three, an object is a pair (F , δ), where F is a graded parity sheaf, and δ
(called the “differential”) is an element of bidegree (1, 0) in some bigraded k-module, satisfying
some condition.

Category Differentials live in. . . and satisfy. . .
Dmix

Gm
(X/H,k) End(F) δ2 = 0

Dmix(X/H,k) Λ⊗ End(F) δ2 + κ(δ) = 0
Dmix

mon(X/H,k) R∨ ⊗ End(F) δ2 = rξ · idF
In the second row, κ is a certain map that satisfies κ(ξ̄ · id) = ξ · id and obeys the Leibniz rule.
See [A, §3] for further details on all three of these categories.

We remark that Hom-groups in Dmix
mon(X/H,k) inherit an action of R∨. In particular, every

object F ∈ Dmix
mon(X/H,k) carries a canonical endomorphism

r · idF : F → F〈2〉,
and all morphisms in Dmix

mon(X/H,k) commute with r. See [A, Definition 3.5].
According to [A, Proposition 5.5], there is a fully faithful functor

Mon : Dmix(X/H,k)→ Dmix
mon(X/H,k).

An explicit formula for this functor can be found in [A, Eq. (5.5)].
The categories Dmix

Gm
(X/H,k) and Dmix(X/H,k) admit a perverse t-structure. Their hearts

are denoted by Pervmix
Gm

(X/H,k) and Pervmix(X/H,k), respectively.

2.3. The nearby cycles functor. Now let f : X → A1 be a Gm-equivariant map, where Gm

acts on A1 by the natural scaling action. Let X0 = f−1(0), and let Xη = f−1(A1r{0}). Assume
that each stratum of X is contained in either X0 or Xη, and that

(2.2) H•GmnH(Xs,k) is free as an R-module for all Xs ⊂ X0.

We let

i : X0 ↪→ X and j : Xη ↪→ X
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be the inclusion maps. By [A, Theorem 8.4], the condition (2.2) implies that

(2.3) Mon : Dmix(X0/H,k)
∼→ Dmix

mon(X0/H,k)

is an equivalence of categories. (In contrast, on Xη, Mon is never an equivalence.) The main
content of [A] is the construction of a functor

Ψf : Dmix
Gm

(Xη/H,k)→ Dmix(X0/H,k),

together with a natural nilpotent endomorphism N : Ψf (F)→ Ψf (F)〈2〉. Explicitly, the functor
is given by the formula

Ψf (F) = Mon−1i∗j∗J (F)〈−2〉.
For a discussion of pullback and push-forward functors in this setting, see [A, §6] (and also [AR1,
§2]). The notation J : Dmix

Gm
(Xη/H,k) → Dmix

mon(Xη/H,k) is used for for the “pro-unipotent
Jordan block functor” as defined in [A, §9].

3. Parity sheaves on affine space

We will use the notation [n] = {1, . . . , n}. For I ⊂ [n], let

(An)I = {(x1, . . . , xn) ∈ An | xi = 0 if and only if i /∈ I}.

The collection of subvarieties {(An)I}I⊂[n] constitutes a stratification of An. Note that (An)[n]

is an open dense subset of An, and (An)∅ is just the origin.

Let T = Gn−1
m , and let T̂ = T × Gm. Throughout, the “last” copy of Gm in T̂ will play a

different conceptual role from the first n− 1 copies, and the notation will reflect that. Let

α1, . . . , αn−1, ξ : T̂ → Gm

be the characters given by

αi(t1, . . . , tn−1, z) = ti, ξ(t1, . . . , tn−1, z) = z.

Define a character αn : T̂ → Gm by

(3.1) αn = ξ − α1 − · · · − αn−1.

Let T̂ act on An with weights α1, . . . , αn−1, αn. In other words,

(t1, . . . , tn−1, z) · (x1, . . . , xn) = (t1x1, t2x2, . . . , tn−1xn−1, t
−1
1 t−1

2 · · · t
−1
n−1zxn).

The set {α1, . . . , αn−1, ξ} is a Z-basis for the character lattice X∗(T̂ ). We have

H•
T̂

(pt;k) = k[α1, . . . , αn−1, ξ],

where the generators α1, . . . , αn−1, ξ all have degree 2. This ring is an algebra over the ring

R = k[ξ] from (2.1). Of course, {α1, . . . , αn−1, αn} is another basis for X∗(T̂ ), and another set
of generators for H•

T̂
(pt;k). It is sometimes convenient to use this basis instead.

Let f : An → A1 be the map f(x1, . . . , xn) = x1x2 · · ·xn. Let T̂ act on A1 via the character

ξ. Then f is T̂ -equivariant. We have

(An)0 = f−1(0) =
⋃
I([n]

(An)I and (An)η = (An)[n].

The following lemma says that condition (2.2) holds.

Lemma 3.1. For each subset I ( [n], H•
T̂

((An)I ;k) is free as an R-module.
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Proof. Let TI = ∩i∈I kerαi. Elementary considerations show that

H•
T̂

((An)I ;k) ∼= H•TI
(pt;k) ∼= k[α1, . . . , αn]/({αi | i ∈ I}).

Since I 6= [n] by assumption, this ring is free over R. �

We now introduce notation for parity sheaves on An. Of course, for each I ⊂ [n], the closure

(An)I is an affine space of dimension |I|. In particular, (An)I is smooth, so the constant sheaf
is a parity sheaf. We introduce the notation

E(I) = k
(An)I

{|I|}.

This is a (T̂ -equivariant) perverse parity sheaf. If i ∈ I, there is a canonical morphism

ε̇i : E(I)→ E(I r {i}){1}

induced by ∗-restriction and adjunction, and another canonical morphism

η̇i : E(I r {i}){−1} → E(I)

induced by !-restriction and adjunction. (We may occasionally write EAn

(I), ε̇A
n

i , or η̇A
n

i to avoid
confusion with the notation to be introduced in Section 8.)

Lemma 3.2. Let I ⊂ [n].

(1) If i /∈ I, then ε̇iη̇i = αi · id : E(I)→ E(I){2}.
(2) If i ∈ I, then η̇iε̇i = αi · id : E(I)→ E(I){2}.

Proof. We first consider the special case where n = 1. For part (1), the statement is nonempty
only when I = ∅. In this case, E(I) is the skyscraper sheaf on the point {0} ⊂ A1, and the map
ε̇1η̇1 : E(I)→ E(I){2} can be regarded as an element of H2

T (pt,k) ∼= k[α1]. It is well known that
this element can be identified with the T -equivariant Euler class of the vector bundle A1 → pt,
and, moreover, that this equivariant Euler class is precisely the character of the T -action on A1:
see, for instance, [AtB, §3]. That is, ε̇1η̇1 = α1 · id.

For part (2), consider the map

φ = ε̇1 ◦ (−) ◦ η̇1 : Hom(kA1 ,kA1{k})→ Hom(kpt,kpt{k + 2})

or HkT (A1,k)→ Hk+2
T (pt,k).

Recall that H•T (A1,k) is a free H•T (pt,k)-module of rank 1, and that the map φ is a homomor-
phism of H•T (pt,k)-modules. By part (1), φ(id) = α1, and φ(η̇1ε̇1) = α2

1. Since H•T (pt,k) is a
domain, φ is injective, and we deduce that η̇1ε̇1 = α1 · id.

The lemma for general n follows from the n = 1 case by taking suitable external tensor
products. �

Proposition 3.3. For any I ⊂ [n], we have∑
i/∈I

ε̇i ◦ η̇i +
∑
i∈I

η̇i ◦ ε̇i = ξ · idE(I).

Proof. This follows immediately from Lemma 3.2 and (3.1). �



316 PRAMOD N. ACHAR AND LAURA RIDER

4. Direct sums of parity sheaves

This section contains a number of technical lemmas about maps between various direct sums of
Tate twists of the parity sheaves E(I). Most of the calculations in this section involve morphisms
of parity sheaves or graded parity sheaves, as discussed in Section 2.1.

Later in this section, we will encounter some formulas involving the indeterminate r. It will be
convenient to treat these on the same footing as ordinary morphisms of graded parity sheaves.
We adopt the convention that a homogeneous element

(4.1) φ ∈ (R∨ ⊗Hom(F ,G))0
0

of bidegree (0, 0) may simply be called a “morphism” φ : F → G.

4.1. First round of direct sums. For k ∈ {0, 1, . . . , n}, let

E⊕k =
⊕
I⊂[n]
|I|=k

E(I).

For 1 ≤ k ≤ n, define ε : E⊕k → E
⊕
k−1{1} by

ε =
∑

I⊂[n], |I|=k
i∈I

(−1)|{j|1 ≤ j < i and j /∈ I}|(ε̇i : E(I)→ E(I r {i}){1}).

Similarly, define η : E⊕k−1{−1} → E⊕k by

η =
∑

I⊂[n], |I|=k
i∈I

(−1)|{j|1 ≤ j < i and j /∈ I}|(η̇i : E(I r {i}){−1} → E(I)).

It is sometimes convenient to (implicitly) allow the notation E⊕−1 = E⊕n+1 = 0. We also understand

ε : E⊕0 → E
⊕
−1 and E⊕n+1 → E⊕n to be the zero maps, and likewise for η. These conventions make

it possible to state the following lemma without worrying about special cases.

Lemma 4.1. (1) We have ε ◦ ε = 0 and η ◦ η = 0.
(2) We have εη + ηε = ξ · id.

Proof. The first assertion follows easily from the formulas. For the second, using Proposition 3.3,
we have

εη + ηε =
∑
|I|=k

(∑
i∈I

η̇iε̇i +
∑
i/∈I

ε̇iη̇i

)
=
∑
|I|=k

ξ · idE(I) = ξ · idE⊕k . �

Next, for 0 ≤ i ≤ n− 1, define an object E⊕i by

E⊕i = E⊕i 〈−n+ i+ 1〉 ⊕ E⊕i 〈−n+ i+ 3〉 ⊕ · · · ⊕ E⊕i 〈n− i− 3〉 ⊕ E⊕i 〈n− i− 1〉.

This object has n − i summands. (We may sometimes consider the object E⊕n = 0 as well.)
Define a map N : E⊕i → E⊕i 〈2〉 or

N : E⊕i 〈−n+ i+ 1〉 ⊕ · · · ⊕ E⊕i 〈n− i− 1〉 → E⊕i 〈−n+ i+ 3〉 ⊕ · · · ⊕ E⊕i 〈n− i+ 1〉

by

N =

 0 id
0 id

. . .
0 id

0

 .
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Also, let ε : E⊕i → E⊕i−1[1] and η : E⊕i−1[−1]→ E⊕i be the maps given by

ε =

 ε
ε

. . .
ε

0 0 ··· 0

 and η =

 0 η
0 η

...
. . .

0 η


Lemma 4.2. (1) We have ε ◦ ε = 0 and η ◦ η = 0.

(2) We have ε ◦N = N ◦ ε and η ◦N = N ◦ η.
(3) We have εη + ηε = ξ ·N .

Proof. This follows easily from Lemma 4.1. �

Remark 4.3. Note that when applied to E⊕n−1, Lemma 4.2(3) reduces to the equation

[ 0 ] [ 0 ] + [ 0 η ] [ ε0 ] = ξ · [ 0 ] .

Thus, Lemma 4.2(3) has nontrivial content only for E⊕i with i ≤ n − 2. One may check this
statement relies on Proposition 3.3 only for |I| ≤ n− 2. For the significance of this observation,
see Section 9.2.

Define maps

ιC : E⊕i 〈−n+ i〉 → E⊕i 〈−1〉, ιB : E⊕i 〈n− i〉 → E⊕i 〈1〉, and εB : E⊕i 〈n− i〉 → E⊕i−1〈−1〉[1]

by

ιC =

 id
r
...

rn−i−1

 , ιB =

 0
...
0
id

 , εB =

[ 0
...
0
ε

]
.

(See (4.1) for the interpretation of maps involving the indeterminate r.) We also let

ρ = rn−i : E⊕i 〈−n+ i〉 → E⊕i 〈n− i〉.

Lemma 4.4. We have:

εBε = εεB = 0 ιBε = εB ιBη = ηιB ιBρ+NιC = rιC

εBη + ηεB = ξιB ειB = NεB rιCη = ηιC εBρ+ ειC = ιCε

Proof. These equations are all straightforward matrix calculations from the definitions above. �

Lastly, define maps

pC : E⊕i 〈−1〉 → E⊕i 〈−n+ i〉, pB : E⊕i 〈1〉 → E
⊕
i 〈n− i〉, and ηC : E⊕i−1〈1〉[−1]→ E⊕i 〈−n+ i〉

by

pC = [ id 0 ··· 0 ] , pB = [ rn−i−1 ··· r id ] , ηC = [ η 0 ··· 0 ] .

Lemma 4.5. We have

ηCη = ηηC = 0 ηC = ηpC pCε = εpC pBN + ρpC = rpB

ηCε + εηC = ξpC ηCN = pCη pBε = rεpB pBη + ρηC = ηpB

Proof. Similar to Lemma 4.4. �
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4.2. Second round of direct sums. Let

EC = E⊕0 〈−n〉 ⊕ E
⊕
1 〈1− n〉 ⊕ · · · ⊕ E⊕n ,

EB = E⊕0 〈n〉 ⊕ E
⊕
1 〈n− 1〉 ⊕ · · · ⊕ E⊕n .

Define ε : EC → EC[1] and η : EC → EC〈−2〉[1] by

ε =

 0 ε
0 ε

. . .
0 ε

0

 , η =


0
η 0

. . .
η 0
η 0

 .
The same matrices also define maps ε : EB → EB〈−2〉[1] and η : EB → EB[1]. It will be clear
from context whether we are working with EC or EB, so no confusion should result from this
overloading of notation.

Lemma 4.6. (1) We have ε ◦ ε = 0 and η ◦ η = 0.
(2) We have εη + ηε = ξ · id.

Proof. This follows easily from Lemma 4.1. (Note that in the special case |I| = 0, εη = ξ · id,
and for |I| = n, ηε = ξ · id.) �

Next, let

E♦ = E⊕0 ⊕ E⊕1 ⊕ · · · ⊕ E⊕n−2 ⊕ E⊕n−1.

(Recall that E⊕n = 0. The object E♦ has only n summands, in contrast with EC and EB,
which have n + 1 summands each.) Define maps N : E♦ → E♦〈2〉, ε : E♦ → E♦[1], and
η : E♦ → E♦[1] by

N =

N N

. . .
N

 , ε =


0 ε

0 ε

. . .
0 ε

0

 , η =


0
η 0

. . .
η 0

η 0

 .
Lemma 4.7. (1) We have ε ◦ ε = 0 and η ◦ η = 0.

(2) We have ε ◦N = N ◦ ε and η ◦N = N ◦ η.
(3) We have εη + ηε = ξ ·N .

Proof. This follows easily from Lemma 4.2. �

Remark 4.8. In particular, the proof of Lemma 4.7(3), like that of Lemma 4.2(3) (see Re-
mark 4.3), relies on Proposition 3.3 only for |I| ≤ n− 2.

We now introduce maps ιC : EC → E♦〈−1〉, ιB : EB → E♦〈1〉, and εB : EB → E♦〈−1〉[1] as
follows:

ιC =

 ιC ··· 0
ιC ··· 0

. . .
ιC 0

 , ιB =

 ιB ··· 0
ιB ··· 0

. . .
ιB 0

 , εB =

 0 εB

0 εB

...
. . .

0 εB

 .
We also let ρ : EC → EB be the map given by

ρ =


rn

rn−1

. . .
r

id

 .
The following lemma is immediate from the definitions.
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Lemma 4.9. We have ρε = rερ and ηρ = rρη.

Lemma 4.10. We have:

εBε = εεB = 0 ιBε = εB ιBη = ηιB ιBρ+NιC = rιC

εBη + ηεB = ξιB ειB = NεB rιCη = ηιC εBρ+ ειC = ιCε

Proof. These equations are all straightforward matrix calculations using Lemma 4.4. �

We conclude this section with maps

pC : E♦〈−1〉 → EC, pB : E♦〈1〉 → EB, and ηC : E♦〈1〉[−1]→ EC

defined as follows:

pC =


pC

pC

. . .
pC

0 0 ··· 0

 , pB =


pB

pB

. . .
pB

0 0 ··· 0

 , ηC =


0 0 ··· 0
ηC

ηC

. . .
ηC

 .
Lemma 4.11. We have

ηCη = ηηC = 0 ηC = ηpC pCε = εpC pBN + ρpC = rpB

ηCε + εηC = ξpC ηCN = pCη pBε = rεpB pBη + ρηC = ηpB

Proof. Similar to Lemma 4.10. �

5. Push-forwards from the generic part

In this section, we will use the objects from Section 4.2 to carry out some sheaf-theoretic
computations. We introduce the notation

Eη = k(An)η
{n} ∈ ParityGm

((An)η/T, k).

Proposition 5.1. In Dmix
Gm

(An/T, k) or Dmix(An/T, k), we have

j!Eη ∼= EC
[1]

ε and j∗Eη ∼= EB
[1]

η .

Remark 5.2. For a version of Proposition 5.1 that looks more like a “classical” chain complex,
one can go down to the level of objects from Section 4.1. In this language, j!Eη is given by

E⊕n E⊕n−1〈−1〉 · · · E⊕1 〈1− n〉 E⊕0 〈−n〉[1]

ε
[1]

ε
[1]

ε
[1]

ε
,

and j∗Eη is given by

E⊕0 〈n〉 E⊕1 〈n− 1〉 · · · E⊕n−1〈1〉 E⊕n[1]

η
[1]

η
[1]

η
[1]

η

.

Proof. We will prove the statement for j!Eη. The proof for j∗Eη is similar. We proceed by
induction on n. For n = 1, we must check that

j!Eη ∼= E([1]) E(∅)〈−1〉[1]

ε
.

This holds by [A, Examples 3.1 and 6.5] (see also [AR2, §A.1]).
We now turn to the general case. Observe that if F is a parity sheaf on An−1 and G is a

parity sheaf on A1, then F �G is a parity sheaf on An. There is therefore a well-defined functor

� : Dmix(A1/Gm,k)×Dmix(An−1/Gn−1
m ,k)→ Dmix(An/Gnm,k).
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For convenience, let us label strata of An−1 by subsets of {2, . . . , n}. For any I ⊂ [n], we
identify (An)I with (A1)I∩{1} × (An−1)I∩{2,...,n}. We claim that for any F ∈ Dmix(A1/Gm,k)

and G ∈ Dmix(An−1/Gn−1
m ,k) and any I ⊂ [n], we have

(5.1) (F � G)|(An)I
∼= F|A1

I∩{1}
� G|An−1

I∩{2,...,n}
.

It is enough to check this in the special case where F and G are parity sheaves. In that case, the
assertion is clear.

Let U ′ ⊂ A1 and U ′′ ⊂ An−1 be the open sets consisting of points all of whose coordinates
are nonzero, and let j′ : U ′ ↪→ A1 and j′′ : U ′′ ↪→ An−1 be the inclusion maps. More generally,
we will use ′ and ′′ below to indicate the A1- or An−1-analogues of objects defined for An. We
claim that

(5.2) j!Eη ∼= (j′!E ′η) � (j′′! E ′′η).

Both sides have the same restriction to U , so it is enough to show that the restriction of the
right-hand side to any stratum in the complement of U is 0. This follows from (5.1).

By (5.2), j!Eη is given by the total complex of the following double complex:

(5.3)

E(∅) � E⊕′′n−1 E(∅) � E⊕′′n−2〈−1〉 · · · E(∅) � E⊕0 〈−n+ 1〉

E([1]) � E⊕′′n−1 E([1]) � E⊕′′n−2〈−1〉 · · · E([1]) � E⊕0 〈−n+ 1〉

[1]

−id�ε′′

[1]

−id�ε′′

[1]

−id�ε′′

[1]

id�ε′′
[1]ε′�id

[1]

id�ε′′
[1]ε′�id

[1]

id�ε′′
[1]ε′�id

To finish the proof, we observe that we may identify

E⊕i ∼= (E(∅) � E⊕′′i )⊕ (E([1]) � E⊕′′i−1).

Moreover, with respect to this identification, and taking into account the signs in the definition
of ε, we can write ε : E⊕i → E

⊕
i−1{1} as

ε =
[
−id�ε′′ ε′�id

id�ε′′

]
.

We conclude that the total complex of (5.3) can be identified with the complex described in
Remark 5.2. �

For the next proposition, we recall that the functor J : Dmix
Gm

((An)η/T ) → Dmix
mon((An)η/T )

from [A, §9] is defined by simply regarding an object (F , δ) ∈ Dmix
Gm

((An)η/T ) as an object of

Dmix
mon((An)η/T ). (This makes sense because the element ξ ∈ R acts by 0 on all Hom-spaces of

parity sheaves on (An)η.)

Proposition 5.3. In Dmix
mon(An/T, k), we have

j!J (Eη) ∼= EC
[1]

ε+rη and j∗J (Eη) ∼= EB
[1]

η+rε .

Proof. We will prove the statement for j!J (Eη). The proof for j∗J (Eη) is similar. Let

δ = ε+ rη : EC → EC[1],

and let

F = (EC, δ) = EC
[1]

ε+rη ∈ Dmix
mon(An/T, k).
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(By Lemma 4.6, we have δ2 = rξ · id, so this is indeed a well-defined object of Dmix
mon(An/T, k).)

Consider the morphism r · id : F〈−2〉 → F . By construction, the cone of this map is the object
G given by

G =

EC

EC〈−2〉[1]

[1]
ε+rη

[1]

−ε−rη

[1]

r
.

On the other hand, consider j!Eη ∈ Dmix(An/T, k). Using Proposition 5.1 and the definition
of Mon, we find that Mon(j!Eη) is given by

Mon(j!Eη) =

EC

EC〈−2〉[1]

[1]
ε

[1]

ξ

[1]

−ε

[1]

r
.

Define a chain map f : G → Mon(j!Eη) by the diagram

EC EC

EC〈−2〉[1] EC〈−2〉[1]

[1]
ε+rη

id

η

[1]
ε

[1]

ξ
[1]

−ε−rη

[1]

r

id

[1]

−ε

[1]

r
.

To check that this really is a chain map, we must show that f commutes with the differentials:
in other words, we must verify that[

id
η id

] [ ε+rη r
−ε−rη

]
= [ ε r

ξ −ε ]
[

id
η id

]
.

This holds by Lemma 4.6.
Next, define f̄ : Mon(j!Eη)→ G by the diagram

EC EC

EC〈−2〉[1] EC〈−2〉[1]

[1]
ε

[1]

ξ

id

−η
[1]

ε+rη

[1]

−ε

[1]

r

id

[1]

−ε−rη

[1]

r
.

A similar calculation shows that f̄ is again a chain map. Moreover, f ◦ f̄ and f̄ ◦ f are both
identity maps.

In other words, f and f̄ show us that G ∼= Mon(j!Eη) in Dmix
mon(An/T, k). From the definition

of G, we see that there is a distinguished triangle

F〈−2〉 r−→ F → Mon(j!Eη)→ .

Now apply i∗ to this triangle. Since Mon commutes with the recollement structure by
[A, Proposition 6.7], we have

i∗Mon(j!Eη) ∼= Mon(i∗j!Eη) = 0.

It follows that r : i∗F〈−2〉 → i∗F is an isomorphism in Dmix
mon((An)0/T, k). On the other hand,

since Dmix
mon((An)0/T, k) ∼= Dmix((An)0/T, k) (see (2.3) or [A, Theorem 8.4]), it is also a nilpotent
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map, as in [A, Remarks 3.3 and 5.6]. Since r is both nilpotent and an isomorphism, we must
have

(5.4) i∗F = 0.

It is clear by construction that

(5.5) j∗F ∼= J (Eη).

The two conditions (5.4) and (5.5) uniquely characterize j!J (Eη), so we are done. �

Proposition 5.4. The object i∗i
∗j∗J (Eη) ∈ Dmix

mon(An/T, k) is given by

EB

EC[1]

[1]
η+rε

[1]
−ε−rη

[1]

ρ

Proof. The proposition is equivalent to the claim that the diagram above depicts the cone of the
canonical map j!J (Eη)→ j∗J (Eη). It follows from Lemma 4.9 that the matrix ρ defines a chain
map φ : j!J (Eη)→ j∗J (Eη). The object depicted above is evidently the cone of φ. Since φ|(An)η

is the identity map J (Eη)→ J (Eη), φ must be the canonical map j!J (Eη)→ j∗J (Eη). �

6. The nearby cycles sheaf for affine space

Let Z ∈ Dmix((An)0/T, k) be the object given by

Z = E♦
[1]

ε+η−ξ̄N
.

To check that Z is a well-defined object of Dmix((An)0/T, k), we must show that

(ε + η− ξ̄N)2 + κ(ε + η− ξ̄N) = 0.

To prove this, recall that ξ̄2 = 0, and that ξ̄ supercommutes with all elements of Λ ⊗ End(Z).
Recall also that κ(ε + η − ξ̄N) = −ξN (see Section 2.2 or [A, §3] for the definition). Using
Lemma 4.7, we find that

(ε + η− ξ̄N)2 + κ(ε + η− ξ̄N)

= ε2 + η2 + ξ̄2N2 + εη + ξ̄εN + ηε + ξ̄ηN − ξ̄Nε− ξ̄Nη− ξN = 0,

as desired.

Remark 6.1. Observe that (as in Remarks 4.3 and 4.8) the fact that Z is well-defined relies on
Proposition 3.3 only for |I| ≤ n− 2.

We will also need to work with the object Mon(Z) ∈ Dmix
mon((An)0/T, k). Applying the explicit

formula from [A, Eq. (5.5)], we obtain

Mon(Z) =

E♦

E♦〈−2〉[1]

[1]
ε+η

[1]

ξ

[1]

−ε−η

[1]

r−N
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Proposition 6.2. There is a chain map ι : i∗i
∗j∗J (Eη)→ Mon(Z)〈1〉 given by

EB E♦〈1〉

EC[1] E♦〈−1〉[1]

[1]
η+rε

ιB

εB
[1]

ε+η

[1]

ξ

[1]
−ε−rη

[1]

ρ

ιC

[1]

−ε−η

[1]

r−N

Proof. Let δ1 be the differential of i∗i
∗j∗J (Eη), and let δ2 be the differential of Mon(Z)〈1〉.

Regarding both these objects as direct sums of two terms as depicted above, these differentials
and the map ι are given by

δ1 =
[ η+rε ρ

−ε−rη
]
, δ2 =

[
ε+η r−N
ξ −ε−η

]
, ι =

[
ιB

εB ιC

]
.

We must show that ιδ1 = δ2ι, or in other words, that[
ιBη+rιBε ιBρ

εBη+rεBε εBρ−ιCε−rιCη

]
=
[
ειB+ηιB+rεB−NεB rιC−NιC

ξιB−εεB−ηεB −ειC−ηιC

]
.

This follows from Lemma 4.4. �

Proposition 6.3. There is a chain map p : Mon(Z)〈1〉 → i∗i
∗j∗J (Eη) given by

E♦〈1〉 EB

E♦〈−1〉[1] EC[1]

[1]
ε+η

[1]

ξ

pB

−ηC

[1]
η+rε

[1]

−ε−η

[1]

r−N
pC

[1]
−ε−rη

[1]

ρ

Proof. Let δ1 and δ2 be as in the proof of Proposition 6.2. We must show that pδ2 = δ1p, where

p =
[
pB

−ηC pC

]
.

In other words, we must show that[
pBε+pBη rpB−pBN

−ηCε−ηCη+ξpC −rηC+ηCN−pCε−pCη

]
=
[
ηpB+rεpB−ρηC ρpC

εηC+rηηC −εpC−rηpC

]
.

This follows from Lemma 4.5. �

Lemma 6.4. There is a null-homotopic chain map Mon(Z)→ Mon(Z)〈2〉 given by[
r−N

r−N
]

: Mon(Z)→ Mon(Z)〈2〉.

Proof. We continue to let δ2 be the differential of Mon(Z), as in the proof of Proposition 6.2.
It is easy to check that

[
r−N

r−N
]

commutes with δ2, so it is a chain map. Next, consider the

map h = [ 0 0
id 0 ], shown as a dotted line below.

E♦ E♦〈2〉

E♦〈−2〉[1] E♦[1]

[1]
ε+η

[1]

ξ

r−N

h=id

[1]

ε+η

[1]

ξ
[1]

−ε−η

[1]

r−N
r−N

[1]

−ε−η

[1]

r−N
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We then have

δ2h+ hδ2 =
[
ε+η r−N
ξ −ε−η

] [
0 0

id 0

]
+
[

0 0

id 0

] [
ε+η r−N
ξ −ε−η

]
=
[
r−N 0

0 r−N
]
,

so our chain map is null-homotopic, as claimed. �

Theorem 6.5. On An, we have Ψf (Eη) ∼= Z〈−1〉. In particular, Ψf (Eη) is a perverse sheaf.
The monodromy endomorphism is given by the map N : Z → Z〈2〉.

Proof. For the first assertion, since Mon is fully faithful, it is enough to show that

Mon(Ψf (Eη))〈2〉 ∼= Mon(Z)〈1〉.
The object Mon(Ψf (Eη))〈2〉 ∼= i∗i

∗j∗J (Eη) has been described in Proposition 5.4, and in Propo-
sitions 6.2 and 6.3, we have constructed two maps

Mon(Ψf (Eη))〈2〉 Mon(Z)〈1〉
ι

p
.

It remains to show that ι and p are isomorphisms in Dmix
mon(An/T, k).

Let qC : EC → EC, qB : EB → EB, and g : EB → EC all be defined by the matrix 0

. . .
0

id

 .
In other words, all three of these maps can be thought of as “projection onto the summand E⊕n .”
It is straightforward to check the following equalities:

qC = id− pCιC gρ = qC gε = 0

qB = id− pBιB ρg = qB ηg = 0

As in Proposition 6.2, let δ1 be the differential of i∗i
∗j∗J (Eη), and let δ2 be the differential

of Mon(Z)〈1〉. We claim that

(6.1) δ1
[

0 0
g 0

]
+
[

0 0
g 0

]
δ1 = id− pι.

Indeed, the left-hand side is given by[ η+rε ρ
0 −ε−rη

] [
0 0
g 0

]
+
[

0 0
g 0

] [ η+rε ρ
0 −ε−rη

]
=
[

ρg 0
gη+rgε−εg−rηg gρ

]
=
[

qB 0

gη−εg qC

]
,

while the right-hand side is given by

id− pι =
[

id−pBιB 0

ηCιB−pCεB id−pCιC

]
=
[

qB 0

ηCιB−pCεB qC

]
.

To finish the proof of (6.1), one must show that gη−εg = ηCιB−pCεB. This is again a routine
matrix calculation.

Next, let h : E⊕i 〈1〉 → E⊕i 〈−1〉 be the map given by

h =


0
id 0
r id 0
r2 r id 0
...

. . .
rn−i−3 ··· id 0
rn−i−2 rn−i−3 ··· r id 0

 .
Easy matrix calculations show that

rh−Nh = ιBpB − id hε− εh = εBpB

rh− hN = ιCpC − id hη− ηh = −ιCηC
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Next, let h : E♦〈1〉 → E♦〈−1〉 be given by

h =

 h h . . .
h

 .
Using the calculations above, one can show that

rh−Nh = ιBpB − id hε− εh = εBpB

rh− hN = ιCpC − id hη− ηh = −ιCηC

We claim that

(6.2) δ2 [ 0 0
h 0 ] + [ 0 0

h 0 ] δ2 = ιp− id

The left-hand side is given by[
ε+η r−N
ξ −ε−η

]
[ 0 0
h 0 ] + [ 0 0

h 0 ]
[
ε+η r−N
ξ −ε−η

]
=
[

rh−Nh 0
hε+hη−εh−ηh rh−hN

]
,

while the right-hand side is given by

ιp− id =
[

ιBpB−id 0

εBpB−ιCηC ιCpC−id

]
.

The equality (6.2) then follows from the calculations above.
The two equations (6.1) and (6.2) show that pι and ιp are both chain-homotopic to identity

maps in Dmix
mon(An/T, k). In other words, p and ι are isomorphisms in Dmix

mon(An/T, k), as desired.
Since the underlying graded parity sheaf E♦ of Z is a direct sum of objects of the form

E(I)〈k〉, each of which is perverse, we conclude that Z itself is a mixed perverse sheaf.
Finally, it remains to describe the monodromy endomorphism NΨ : Z → Z〈2〉. By definition

(see [A, Definition 3.5]), the map Mon(NΨ) : Mon(Z) → Mon(Z)〈2〉 is given by r · id. By
Lemma 6.4, this map is homotopic (i.e., equal in Dmix

mon(An/T, k)) to Mon(N). We conclude that
NΨ = N . �

7. Background on the affine flag variety

This section contains notation and preliminaries related to the affine Weyl group and the
affine flag variety of PGLn.

7.1. The extended affine Weyl group. Let W be the Weyl group of PGLn, identified with
the symmetric group on {1, . . . , n}. It is generated by the simple reflections s1, . . . , sn−1, where
si is the permutation of [n] = {1, 2, . . . , n} that exchanges i and i+ 1.

Let Y be the coweight lattice of PGLn. We identify Y explicitly as

Y = Zn/Z · (1, . . . , 1).

Let Φ̌ ⊂ Y be the set of coroots, given by Φ̌ = {ei − ej |i, j ∈ [n], i 6= j}, where {ei}i∈[n] denotes

the standard basis in Zn. The coroot lattice ZΦ̌ ⊂ Y is then identified with the image of the
set {(y1, . . . , yn) ∈ Zn |

∑
yi ≡ 0 (mod n)}. Let

Waff = W n ZΦ̌ and Wext = W n Y

be the affine Weyl group and the extended affine Weyl group, respectively. For λ ∈ Y, we write
tλ for the corresponding element of Wext. Let α̌0 = (1, 0, . . . , 0,−1) be the highest coroot, and
let sα0 ∈ W be the reflection with respect to this root (i.e., the permutation that exchanges 1
and n). Recall that Waff is a Coxeter group; it is generated by W together with the affine simple
reflection

sn = sα0
t−α0

.
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(The affine simple reflection is usually denoted by s0, but we will use sn because it will allow for
uniformity of notation with the setting of Section 3.)

The group Wext is not a Coxeter group, but it nevertheless makes sense to speak of the lengths
of elements in Wext, following [IM]. Let

ω = s1s2 · · · sn−1t(0,...,0,1).

This is an element of length 0 of order n. In fact, the set {1, ω, ω2, . . . , ωn−1} is the set of all
elements of length 0. We adopt the convention that a reduced expression for w ∈ Wext is an
expression of the form

w = si1 · · · sikωm,
where 0 ≤ m < n, and where si1 · · · sik is a reduced expression in Waff . A subexpression of this
expression is a word obtained by omitting some of the simple reflections (but without changing
the power of ω).

7.2. The affine flag variety. Let B ⊂ PGLn(C((t))) be the usual (“upper-triangular”) Iwahori
subgroup, and let Fl = PGLn(C((t)))/B be the affine flag variety for PGLn. It is well known that
the B-orbits on Fl are parametrized by Wext. For w ∈ Wext, let Flw denote the corresponding
B-orbit.

Lemma 7.1. Let w ∈ Wext, and let w = si1 · · · sikωm be a reduced expression. Assume that
k < n, and that no two of the simple reflections si1 , . . . , sik are equal. Then the Bott–Samelson
resolution

π : Psi1 ×
B Psi2 ×

B · · ·Psik ×
B Flωm → Flw

is a bijection.

We will later see that this map is actually an isomorphism of varieties.

Proof sketch. We may reduce to the case where m = 0, so that we are working in Waff instead
of Wext. The Bott–Samelson map is always surjective; we just need to prove that it is injec-
tive. Consider the standard basis {Tw : w ∈ Waff} for the affine Hecke algebra. Under our
assumptions, every subexpression of si1 · · · sik is reduced. This observation implies that

(Tsi1 + 1)(Tsi2 + 1) · · · (Tsik + 1) =
∑

u a subexpression
of si1si2 · · · sik

Tu.

It is well known that for any u ≤ w, the coefficient of Tu on the right-hand side above encodes
the cohomology of the fiber of the Bott–Samelson resolution over any point of Flu. Since these
coefficients are all 1, the fibers are single points �

Let Gm act on C((t)) by scaling the indeterminate t (the “loop rotation action”). Then one
can form the semidirect product Gm n B, and this group acts on Fl. It is well known that the
orbits of Gm n B on Fl are the same as those of B. Let ParityGmnB(Fl,k) be the category of
Gm n B-equivariant parity sheaves on Fl. For any w ∈ Wext, there is a unique indecomposable
object Ew ∈ ParityGmnB(Fl) that is supported on Flw and that satisfies

Ew|Flw
∼= kFlw

{dim Flw}.

In particular, for w = ωm, the variety Flωm = Flωm is a single point, and Eωm is a skyscraper
sheaf.

The category ParityGmnB(Fl,k) is equipped with a monoidal structure given by the convo-
lution product, denoted by ?. The skyscraper sheaf at the identity element E1 is the unit for
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this product. For any w ∈Wext, if w = si1 · · · sikωm is a reduced expression, then Ew is a direct
summand (with multiplicity 1) of

Esi1 ? · · · ? Esik ? Eωm .

Moreover, this convolution product is canonically (see [RW, §10.2]) isomorphic to π∗k{dim Flw},
where π is the Bott–Samelson resolution of Flw corresponding to the given reduced expression.

For any simple reflection s, there are counit and unit maps between Es and shifts of E1.
Following [EW], we denote these maps by

•
s

: Es → E1{1} and
s
• : E1{−1} → Es,

respectively.

7.3. The first fundamental coweight and admissible elements. Let

$̌1 = $̌
(1)
1 = (1, 0, . . . , 0) ∈ Y

be the first fundamental coweight. Its orbit under W consists of the coweights

$̌
(i)
1 = (0, . . . , 0, 1, 0, . . . , 0) (1 in the ith coordinate), 1 ≤ i ≤ n.

For brevity, we will denote the corresponding elements of Wext by

ti = t
$̌

(i)
1

for 1 ≤ i ≤ n.

One can check that

(7.1)

t1 = snsn−1 · · · s3s2ω

t2 = s1sn · · · s4s3ω

...

ti = si−1si−2 · · · si+2si+1ω

...

tn = sn−1sn−2 · · · s2s1ω

(In the expression for ti, the subscripts on the simple reflections are to be understood modulo
n.) In fact, these are reduced expressions for t1, . . . , tn.

Definition 7.2. An element w ∈Wext is said to be $̌1-admissible if there is some i ∈ {1, . . . , n}
such that w ≤ ti in the Bruhat order.

We will classify the $̌1-admissible elements using the following notion.
Let I ( [n] be a proper subset. List its elements in some order as

i1, i2, . . . , ik.

This order is called an acceptable order on I if the following conditions hold:

(1) If i1 < n, then i1 + 1 /∈ I. If i1 = n, then 1 /∈ I.
(2) Exactly one of the following inequalities is false:

i1 > i2 > · · · > ik > i1.
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Here is a more intuitive description of this notion. Consider the affine Dynkin diagram of type
Ãn−1:

(7.2)

n

1 2 · · · n− 2 n− 1

An acceptable order on I is an order obtained by listing its elements in clockwise order, starting
from an element whose immediate counterclockwise neighbor does not belong to I.

Lemma 7.3. Let I ( [n] be a proper subset.

(1) Choose an acceptable order i1, i2, . . . , ik on I, and let

(7.3) wI = si1si2 · · · sikω ∈Wext.

This element is independent of the choice of acceptable order.
(2) The assignment I 7→ wI gives a bijection

(7.4) {proper subsets of [n]} ∼↔ {$̌1-admissible elements of Wext}.

Proof. (1) Suppose we have another acceptable order on I. This order must be of the form
it+1, it+2, . . . , ik, i1, i2, . . . , it, for some t with 1 ≤ t < k and with it+1 + 1 /∈ I (or 1 /∈ I,
in the case where it+1 = n). Our assumptions imply that every simple reflection in the set
{si1 , . . . , sit} commutes with every simple reflection in the set {sit+1

, . . . , sik}. It follows that
wI is independent of the choice of acceptable order.

(2) Every $̌1-admissible element is given by a subexpression of some expression in (7.1). It is
clear that any such subexpression is of the form considered in (7.3), so the map (7.4) is surjective.

Next, let I, I ′ ( [n]. Choose acceptable orders for both I and I ′. The corresponding ex-
pressions for wI and wI′ from (7.3) are reduced. If wI = wI′ , then (by Matsumoto’s theorem)
the reduced expression for wI can be changed into that for wI′ by applying a sequence of braid
relations. But since there are no repeated simple reflections in (7.3), the only possible braid
relations that can be applied are those of the form sisj = sjsi, where i and j are not neighbors
in (7.2). This implies that I = I ′, so the map (7.4) is injective. �

In view of Lemma 7.3, we introduce the notation

FlI = FlwI
for any I ( [n].

8. Parity sheaves on the global Schubert variety

Following [PZ, Z], one can associate to any reductive group G and any dominant coweight λ
a space Grλ, called a “global Schubert variety.” This variety is equipped with a map to A1. Its
generic fiber is a subvariety of the affine Grassmannian of G, and its special fiber is a subvariety
of the affine flag variety of G.

In this section, we study the geometry of this variety in the special case where the group is
G = PGLn and the coweight is λ = $̌1.

8.1. The global Schubert variety Gr $̌1
. We begin by giving a concrete description of the

variety Gr $̌1
. This description comes from [G1, §4.1] (where it is called the “standard local

model”). For a discussion of how the two settings are related, see [PZ, §7.2.1] and [PRS].



NEARBY CYCLES FOR PARITY SHEAVES 329

For y ∈ A1 and i ∈ [n], let gi(y) : Cn → Cn be the linear map given by

gi(y) =


1

. . .
1
y

1

. . .
1

 ,
where the “y” appears as the ith entry on the diagonal. Let

Gr $̌1
= {(y, L1, . . . , Ln) ∈ A1 × Pn−1 × · · · × Pn−1 |

g1(y)(L1) ⊂ L2, . . . , gn−1(y)(Ln−1) ⊂ Ln, gn(y)(Ln) ⊂ L1}.

Projection onto the first coordinate gives us a map

f : Gr $̌1 → A1.

Of course, if y 6= 0, then gi(y) is invertible, so the lines L2, . . . , Ln are all determined by L1

alone. We deduce that

f−1(y) ∼= Pn−1 ∼= Gr$̌1 if y 6= 0.

On the other hand, the special fiber f−1(0) can be embedded as a closed subvariety of the affine
flag variety Fl. See [G1, §4.2] for an explicit description of this embedding. Via this embedding,
according to [Z, Theorem 3], we have

f−1(0) =
⋃

w∈Wext
w is $̌1-admissible

Flw.

Let T ⊂ PGLn be the maximal torus consisting of diagonal matrices. The natural action of
T on Pn−1 commutes with each of the gi(y)’s, so there is an induced action of T on Gr $̌1

given
by

t · (y, L1, . . . , Ln) = (y, tL1, tL2, . . . , tLn).

Next, we define an action of Gm on Gr $̌1
by letting z ∈ Gm act by

z · (y, L1, . . . , Ln) = (zy, L1, g1(z)L2, g1(z)g2(z)L3, . . . , g1(z) · · · gn−1(z)Ln).

The actions of T and Gm commute, so there is an action of T̂ = T × Gm on Gr $̌1
. We define

characters α1, . . . , αn−1, ξ : T̂ → Gm by

αi

([ y1

. . .
yn

]
, z

)
= yi+1y

−1
i , ξ

([ y1

. . .
yn

]
, z

)
= z.

These formulas agree with those in Section 3 after making the change in coordinates ti = yi+1y
−1
i .

Note that the restrictions of α1, . . . , αn to T ⊂ T̂ are the negatives of the usual simple roots
of PGLn. Alternatively, they are the simple roots with respect to which the upper-triangular
Iwahori subgroup B may be thought of as “negative.” We also let

αn = ξ − α1 − · · · − αn−1 :

([ y1

. . .
yn

]
, z

)
7→ zy1y

−1
n .
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8.2. An open affine subset of Gr $̌1
. Suppose 1 ≤ j, k ≤ n Define a map pj,k : An → A1 by

pj,k(x1, . . . , xn) =


1 if k − j = −1 or k − j = n− 1

xjxj+1 · · ·xk if j ≤ k and k − j < n− 1,

xjxj+1 · · ·xnx1x2 · · ·xk if k < j and k − j < −1.

In other words pj,k is the product of variables starting at xj and proceeding counterclockwise
around (7.2) up to xk, except when this rule would give us the product of all the variables, in
which case we instead take the empty product. Next, let uk : An → Pn−1 be the map given by

uk = [pk,n : pk,1 : pk,2 : · · · : pk,n−1],

and then let u : An → Gr $̌1 be the map given by

u(x1, . . . , xn) = (x1x2 · · ·xn, u1, u2, · · · , un).

For example, when n = 4, u is given by

u(x1, x2, x3, x4) = (x1x2x3x4, [1 : x1 : x1x2 : x1x2x3], [x2x3x4 : 1 : x2 : x2x3],

[x3x4 : x3x4x1 : 1 : x3], [x4 : x4x1 : x4x1x2 : 1]).

It is straightforward to check that u does indeed take values in Gr $̌1
, i.e., that

gi(x1 · · ·xn) · ui ⊂ ui+1.

Moreover, if we let T̂ act on An by

t · (x1, . . . , xn) = (α1(t)x1, . . . , αn(t)xn),

then the map u is T̂ -equivariant.

Lemma 8.1. The map u : An → Gr $̌1
is an open embedding. Its image meets every B-orbit in

f−1(0). Indeed, we have

u−1((Gr $̌1
)η) = (An)η and u−1(FlI) = (An)I for I ( [n].

Proof sketch. Given a point (y, L1, . . . , Ln) ∈ Gr $̌1
, write each line Li in homogeneous co-

ordinates as Li = [ai1 : ai2 : · · · : ain]. Let U ⊂ Gr $̌1
be the open subset consisting of

points (y, L1, . . . , Ln) such that aii 6= 0 for all i ∈ [n]. It is easy to see from the formula that
u : An → Gr $̌1 actually takes values in U . On the other hand, there is a map v : U → An given
by

v(y, L1, . . . , Ln) =
(
a12

a11
, a23

a22
, . . . ,

an−1,n

an−1,n−1
, an1

ann

)
.

Elementary calculations show that u and v are inverse to one another.
For the claim that U meets every B-orbit in f−1(0), see [G1, Proposition 4.5(ii)]. �

Corollary 8.2. The variety Gr $̌1 is smooth. For any I ( [n], the Schubert variety FlwI
is

smooth.

Proof. The singular locus of Gr $̌1
must be contained in the special fiber f−1(0), and it must

be stable under the Iwahori subgroup B. Since the open set U from the proof of Lemma 8.1
meets every B-orbit in f−1(0), it must meet the singular locus if the latter is nonempty. But
U is smooth, so the singular locus is empty. The same reasoning shows that Schubert varieties
associated to $̌1-admissible elements of Wext are smooth. �
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Corollary 8.3. Let I ( [n], and let i1, . . . , ik be an acceptable order on I. The Bott–Samelson
resolution

π : Psi1 ×
B Psi2 ×

B · · ·Psik ×
B Flω → FlwI

is an isomorphism of varieties.

Proof. It is a well-known consequence of Zariski’s main theorem that a bijective map between
smooth complex varieties is an isomorphism, so this follows from Lemma 7.1 and Corollary 8.2.

�

8.3. Parity sheaves. Observe that the collection {FlI}I([n] ∪ {(Gr $̌1)η} constitutes a stratifi-

cation of Gr $̌1 . By Corollary 8.2, the closure of every stratum is smooth, so the constant sheaf
is a parity sheaf. We introduce the notation

E(I) =

{
kFlI
{|I|} if I ( [n],

kGr$̌1
{n} if I = [n].

This is a perverse parity sheaf. If i ∈ I, there is a canonical morphism

ε̇i : E(I)→ E(I r {i}){1}
induced by ∗-restriction and adjunction, and another canonical morphism

η̇i : E(I r {i}){−1} → E(I)

induced by !-restriction and adjunction. We may occasionally write EGr$̌1 (I), ε̇
Gr$̌1
i , or η̇

Gr$̌1
i

to avoid ambiguity with the notation from Section 3.

Lemma 8.4. We have u∗EGr$̌1 (I) ∼= EA
n

(I). Moreover, u∗ε̇
Gr$̌1
i can be identified with ε̇A

n

i , and

u∗η̇
Gr$̌1
i can be identified with η̇A

n

i .

Proof. This follows immediately from Lemma 8.1. �

The following lemma relates these objects to the convolution structure discussed in Section 7.2.

Lemma 8.5. Let I ( [n], and let i1, . . . , ik be an acceptable order on I. Then there is a canonical
isomorphism

(8.1) Esi1 ? · · · ? Esik ? Eω
∼= E(I).

Moreover, via this identification, for any it ∈ I, we have

(8.2)

idEsi1
? · · · ? idEsit−1

? •
sit

? idEsit+1
? · · · ? idEsik

? idEω = ε̇it ,

idEsi1
? · · · ? idEsit−1

?
sit
• ? idEsit+1

? · · · ? idEsik
? idEω = η̇it .

Proof. The left-hand side of (8.1) is canonically (see [RW, §10.2]) isomorphic to π∗k{dim FlwI
},

where π is the Bott–Samelson resolution indicated in the bottom row of (8.3) below. The
isomorphism (8.1) then follows from Corollary 8.3.

(8.3)

Psi1 ×
B · · · ×B Psit−1

×B B ×B Psit+1
×B · · · ×B Psik ×

B Flω XIr{it}

Psi1 ×
B · · · ×B Psit−1

×B Psit ×
B Psit+1

×B · · · ×B Psik ×
B Flω XI

That corollary also tells us that the top horizontal map is also an isomorphism. Both vertical
maps are closed embeddings. The left-hand sides of (8.2) are induced by ∗- or !-restriction
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and adjunction in the left-hand column of (8.3), while the right-hand sides of (8.2) are defined
analogously using the right-hand column of (8.3). The isomorphisms in (8.2) follow. �

Proposition 8.6. For any I ⊂ [n] with |I| ≤ n− 2, we have∑
i/∈I

ε̇i ◦ η̇i +
∑
i∈I

η̇i ◦ ε̇i = ξ · idE(I).

Proof. A proper subset B ( [n] is said to be a block if it admits a unique acceptable order. (In
other words, a block is a sequence of consecutive labels in (7.2), reading in clockwise order.)
Given a nonempty block B with acceptable order B = (b1, . . . , bk), we define the core of B to
be the block B◦ = (b1, . . . , bk−1), and its tail to be the remaining integer bk.

Let B be a nonempty block, with core B◦ and tail j. We begin by proving the following
auxiliary statement, an equality of maps E(B◦)→ E(B◦){2}:

(8.4) ε̇j ◦ η̇j +
∑
i∈B◦

η̇i ◦ ε̇i =
(∑
b∈B

αb

)
· idE(B◦).

We proceed by induction on the number of elements in B◦. If B◦ is empty (so that E(B◦) = Eω),
then by Lemma 8.5, the left-hand side of (8.4) reduces to

ε̇j ◦ η̇j = ( •
sj
? idEω ) ◦ (

sj

• ? idEω ) = αj · idE(B◦),

where the last step follows from [EW, §1.4.1].
Now, assume that B◦ is nonempty. Let b1 be its first element (in the acceptable order), and

let B′ = B r {b1}. Of course, B′ is still a block, and B and B′ have the same tail. We have

E(B◦) ∼= Esb1
? E(B′◦).

In the following calculation, we will label some of the maps with superscripts to indicate the
domain. We have

(8.5) ε̇j ◦ η̇B
◦

j +
∑
i∈B◦

η̇i ◦ ε̇B
◦

i

= idEsb1
? (ε̇j ◦ η̇B

′◦

j ) +
( ∑
i∈B′◦

idEsb1
? (η̇i ◦ ε̇B

′◦

i )
)

+ η̇b1 ◦ ε̇B
◦

b1

=
∑
b∈B′

idEsb1
? (αb · idE(B′◦)) + (

sb1

• ? idE(B′◦)) ◦ ( •
sb1

? idE(B′◦)).

Let b2 be the first element of B′ (in the acceptable order). The simple reflections sb1 and
sb2 do not commute (b1 and b2 are adjacent labels in (7.2)), but sb1 commutes with sb for all
b ∈ B′ r {b2}. According to [EW, §1.4.1], we have

(8.6) idEsb1
? αb =

αb ? idEsb1
if b 6= b2,

(αb1 + αb2) ? idEsb1
−
sb1

• ◦ •
sb1

if b = b2.

Combining (8.5) and (8.6), we obtain (8.4).
We can generalize (8.4) as follows. Let I ( [n] be a subset such that I ∩ B = B◦, and such

that I admits an acceptable order starting with B◦. The same calculation as above shows that

(8.7) ε̇j ◦ η̇j +
∑
i∈B◦

η̇i ◦ ε̇i =
(∑
b∈B

αb

)
· idE(I).
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We now return to the main statement of the proposition. It is easily seen that that there is
a unique way to write the set [n] as a disjoint union of blocks

[n] = B1 t · · · tBr such that I = B◦1 ∪ · · · ∪B◦r .
(This is where the assumption that |I| ≤ n − 2 is required: this block decomposition does not
exist if |I| > n − 2.) Assume that these blocks are numbered in such a way that if we list the
elements of B◦1 , then those of B◦2 , etc., according to the acceptable order for each block, the
resulting list is in an acceptable order on I. Moreover, if we cyclically permute the blocks, say
as

Bt, Bt+1, . . . , Br, B1, . . . , Bt−1,

and then list the elements in their cores as above, we again obtain an acceptable order on I.
Let jt denote the tail of Bt. We have∑

i/∈I

ε̇i ◦ η̇i +
∑
i∈I

η̇i ◦ ε̇i =

r∑
t=1

(
ε̇jt ◦ η̇jt +

∑
i∈B◦t

η̇i ◦ ε̇i
)
.

For each t, I admits an acceptable order starting with Bt◦, so we can apply (8.7) to the right-hand
side above. We conclude that∑

i/∈I

ε̇i ◦ η̇i +
∑
i∈I

η̇i ◦ ε̇i =

r∑
t=1

∑
b∈Bt

αb · idE(I) = ξ · idE(I),

as desired. �

9. The nearby cycles sheaf on Gr $̌1

Let us introduce the notation

Eη = k(Gr$̌1
)η
{n} ∈ ParityGm

((Gr $̌1
)η/T, k).

The goal of this section is to compute Ψf (Eη). Note that compared to Proposition 3.3, Propo-
sition 8.6 is missing a few cases. Unfortunately, the calculations in Sections 4–6 make use of all
the cases of Proposition 3.3, so we cannot simply copy those computations for Gr $̌1 .

Instead, we take a roundabout approach. Let

u0 : (An)0 → (Gr $̌1
)0 and uη : (An)η → (Gr $̌1

)η

be the restrictions of the map u : An → Gr $̌1
from Lemma 8.1. We will first show that u∗0 is

fully faithful on perverse sheaves, and we will then use this to show that the desired result on
Gr $̌1 can be deduced from Theorem 6.5.

9.1. Mixed perverse sheaves on An and Gr $̌1
. Recall that k is either a field or a complete

discrete valuation ring. In the case where k is not a field, let π be a generator of its maximal
ideal.

Throughout this subsection, we will treat the parity sheaves E(I) as T -equivariant objects,
and we will work in the T -equivariant derived category. However, the same statements hold in
the T̂ -equivariant setting, with the same proofs.

In the case where k is not a field, for each I ⊂ [n], we set

Ē(I) = cone(E(I)
π·id−−→ E(I)) in Dmix(Gr $̌1/T, k).

Lemma 9.1. (1) If k is a field, every perverse sheaf F ∈ Pervmix(Gr $̌1
/T, k) admits a

finite filtration whose subquotients are of the form E(I)〈k〉 for some I ⊂ [n] and some
k ∈ Z.
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(2) If k is not a field, every perverse sheaf F ∈ Pervmix(Gr $̌1
/T, k) admits a finite filtration

whose subquotients are of the form E(I)〈k〉 or Ē(I)〈k〉 for some I ⊂ [n] and some k ∈ Z.

Proof. We have E(I) ∼= IC((Gr $̌1
)I ,k), and if k is not a field, we also have

Ē(I) ∼= IC((Gr $̌1)I ,k/(π)).

Part (1) is just a restatement of the fact that when k is a field, every mixed perverse sheaf has
finite length.

When k is a complete discrete valuation ring, perverse sheaves need not have finite length,
but a mixed variant of [RSW, Lemma 2.1.4 and Remark 2.1.5] implies that every mixed perverse
sheaf admits a finite filtration of the desired form. �

Lemma 9.2. Let I, J ( [n].

(1) The following natural map is an isomorphism for i = 0, 1:

Hom(E(I), E(J)〈k〉[i])→ Hom(u∗E(I), u∗E(J)〈k〉[i]).
(2) Suppose that k is not a field. Then the following maps are isomorphisms for i = 0, 1:

Hom(E(I), Ē(J)〈k〉[i])→ Hom(u∗E(I), u∗Ē(J)〈k〉[i]),(9.1)

Hom(Ē(I), E(J)〈k〉[i])→ Hom(u∗Ē(I), u∗E(J)〈k〉[i]),(9.2)

Hom(Ē(I), Ē(J)〈k〉[i])→ Hom(u∗Ē(I), u∗Ē(J)〈k〉[i]).(9.3)

Proof. (1) Let K = I ∩ J , and let h : FlK → (Gr $̌1
)0 be the inclusion map. The intersection of

the supports of E(I) and E(J) is precisely FlK , so there is a natural isomorphism

Hom(h∗E(I), h!E(J)〈k〉[i]) ∼→ Hom(E(I), E(J)〈k〉[i]).

Similarly, if we let h′ : (An)K → An be the inclusion map, there is a natural isomorphism

Hom((h′)∗u∗E(I), (h′)!u∗E(J)[i])
∼→ Hom(u∗E(I), u∗E(J)〈k〉[i]).

The lemma thus reduces to the study of the natural map

(9.4) Hom(h∗E(I), h!E(J)〈k〉[i])→ Hom((h′)∗u∗E(I), (h′)!u∗E(J)〈k〉[i]).
Let r = |I rK|, and let s = |J rK|. Observe that

h∗E(I) ∼= E(K)〈−r〉[r] and h!E(J) ∼= E(K)〈s〉[−s]
Analogous statements hold on An, so (9.4) further reduces to the study of the map

(9.5) Hom(E(K), E(K)〈k + r + s〉[i− r − s])→ Hom(u∗E(K), u∗E(K)〈k + r + s〉[i− r − s]).
If i 6= −k, both sides vanish, so there is nothing to prove. Assume from now on that i = −k.
Then these Hom-groups can be computed inside the category of parity sheaves, or inside the
ordinary (nonmixed) derived category. The map (9.5) can thus be identified with the first map
in the following sequence:

(9.6) Hi−r−sT (kFlK
)→ Hi−r−sT (k

(An)K
)→ Hi−r−sT (k(An)∅

).

The last term is the cohomology of the stalk of kFlK
at the point Flω. The composition of

the maps in (9.6) is surjective by [FW, Theorem 5.7(2) and Proposition 7.1]. Since the T -fixed
point (An)∅ is attractive, the second map in (9.6) is an isomorphism. We conclude that (9.5) is
surjective.

We wish to prove that (9.5) is an isomorphism for i = 0, 1. Of course, both sides are free
k-modules, so it is enough to prove that they have the same rank. Recall that r, s ≥ 0. For
i = k = 0, both sides of (9.5) vanish unless r = s = 0, and in that case both sides have rank 1.
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If i = −k = 1, then both sides vanish unless r + s ≤ 1. In fact, they also vanish when r = s = 0
by parity considerations. We therefore must have r + s = 1 and i − r − s = 0, so again, both
sides of (9.5) have rank 1.

(2) Consider the diagram

Hom(E(I), E(J)〈k〉[i]) Hom(u∗E(I), u∗E(J)[i])

Hom(E(I), E(J)〈k〉[i]) Hom(u∗E(I), u∗E(J)〈k〉[i])

Hom(E(I), Ē(J)〈k〉[i]) Hom(u∗E(I), u∗Ē(J)〈k〉[i])

Hom(E(I), E(J)〈k〉[i + 1]) Hom(u∗E(I), u∗E(J)〈k〉[i + 1])

π π

For i = 0, 1, the terms in the fourth row vanish, and the horizontal maps in the first two rows
are isomorphisms by part (1). It follows that the third horizontal map is an isomorphism. We
have proved (9.1).

The proof of (9.2) is similar, using the diagram

(9.7)

Hom(E(I), E(J)〈k〉[i− 1]) Hom(u∗E(I), u∗E(J)〈k〉[i− 1])

Hom(Ē(I), E(J)〈k〉[i]) Hom(u∗Ē(I), u∗E(J)〈k〉[i])

Hom(E(I), E(J)〈k〉[i]) Hom(u∗E(I), u∗E(J)〈k〉[i])

Hom(E(I), E(J)〈k〉[i]) Hom(u∗E(I), u∗E(J)〈k〉[i])
π π

Finally, the isomorphism (9.3) follows from (9.1) using a commutative diagram very similar
to (9.7). �

Proposition 9.3. The functor u∗0 : Perv((Gr $̌1
)0/T, k)→ Perv((An)0/T, k) is fully faithful.

Proof. Since (An)0 meets every stratum in (Gr $̌1)0, the functor u∗0 kills no nonzero object. It
follows immediately that u∗0 is faithful.

We will prove that u∗0 is also full in the case where k is not a field. The proof in the field case
is easier; the appropriate modifications are left to the reader.

For any F ∈ Perv((Gr $̌1
)0/T, k), we first claim that

(9.8) Hom(E(I),F)→ Hom(u∗0E(I), u∗0F)

is an isomorphism. The proof is by induction on the length of a filtration of F as in Lemma 9.1.
If F itself is isomorphic to some E(J)〈k〉 or Ē(J)〈k〉, the claim holds by (the i = 0 case of)
Lemma 9.2. For general F , the claim follows by a five-lemma argument involving the i = 1 case
of Lemma 9.2.

Next, we claim that for any F ∈ Perv((Gr $̌1
)0/T, k), the map

(9.9) Hom(E(I),F [1])→ Hom(u∗0E(I), u∗0F [1])

is injective. Again, if F is isomorphic to E(J)〈k〉 or Ē(J)〈k〉, the claim holds by Lemma 9.2.
The general case follows by induction, the four-lemma, and Lemma 9.2 again.
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It remains to show that for all G ∈ Perv((Gr $̌1
)0/T, k), the map

(9.10) Hom(G,F)→ Hom(u∗0G, u∗0F)

is an isomorphism. This holds by induction on the length of a filtration of G as in Lemma 9.1,
using (9.8), (9.9), and the four-lemma. �

9.2. The nearby cycles sheaf. It makes sense to copy the definitions of direct sums of parity
sheaves from Section 4: we may speak, for instance, of (analogues of) E⊕i or E♦ on Gr $̌1

. We do

not know whether all the lemmas from Section 4 hold on Gr $̌1 , but there are a few steps in the
calculation that rely only on those cases of Proposition 3.3 that overlap with Proposition 8.6:
see Remarks 4.3, 4.8, and 6.1.

In particular, by Remark 6.1, it makes sense to consider the object

Z = E♦
[1]

ε+η−ξ̄N

in Dmix((Gr $̌1)0/T, k). We will sometimes write ZAn

and ZGr$̌1 to distinguish the object
defined here from that defined in Section 6.

Lemma 9.4. For any F ∈ Dmix
Gm

((Gr $̌1)η/T, k), there is a natural isomorphism

u∗0Ψf (F) ∼= Ψf (u∗ηF).

Moreover, this isomorphism is compatible with the monodromy endomorphisms.

This lemma is an instance of a very general fact about the commutativity of nearby cycles
and restriction to an open subset.

Proof. Let i : (Gr $̌1)0 ↪→ Gr $̌1 and j : (Gr $̌1)η ↪→ Gr $̌1 be the inclusion maps, and let i′

and j′ be their analogues for An. It is an exercise in the recollement formalism to show that
u∗ ◦ j∗ ∼= j′∗ ◦ u∗η and that u∗0 ◦ i∗ ∼= (i′)∗ ◦ u∗. It follows immediately from the definitions that u∗0
commutes with Mon, and that u∗η commutes with J . The result follows. �

Theorem 9.5. On Gr $̌1
, we have Ψf (Eη) ∼= Z〈−1〉. In particular, Ψf (Eη) is a perverse sheaf.

The monodromy endomorphism is given by the map N : Z → Z〈2〉.

Proof. In the body of this proof, all sheaves will be labelled with a superscript indicating the
variety on which they live. By Lemma 9.4, we have

(9.11) u∗0Ψf (EGr$̌1
η ) ∼= Ψf (u∗ηE

Gr$̌1
η ) ∼= Ψf (EA

n

η ).

On the other hand, it follows from Lemma 8.4 that

u∗0Z
Gr$̌1 ∼= ZAn

.

Combining these observations with Theorem 6.5, we see that

u∗0Ψf (EGr$̌1
η ) ∼= u∗0Z

Gr$̌1 〈−1〉.

Theorem 6.5 also tells us that the right-hand side of (9.11) is perverse. Since u∗0 is t-exact

and kills no nonzero perverse sheaf, we see that Ψf (EGr$̌1
η ) must be perverse as well. Then,

by Proposition 9.3, we conclude that Ψf (EGr$̌1
η ) ∼= ZGr$̌1 〈−1〉. Since (9.11) identifies the

monodromy endomorphisms on both sides, the description of this map in Theorem 6.5 remains
valid on Gr $̌1 . �
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10. The monodromy filtration

The discussion in this section applies to both An and Gr $̌1 . The nilpotent endomorphism
N : Z → Z〈2〉 determines a canonical filtration on Z, as described in the following lemma.
This filtration is called the monodromy filtration.

Lemma 10.1. There is a unique increasing filtration M•Z on Z with the following properties:

(1) For all i, we have N(MiZ) ⊂ (Mi−2Z)〈2〉.
(2) For i ≥ 0, the map N i : Z → Z〈2i〉 induces an isomorphism

grMi Z ∼→ grM−iZ〈2i〉.

The analogous statement for a nilpotent operator on a vector space is well known: see, for
instance, [SZ, Proposition 2.1], from which the following proof is adapted.

Proof. Let m > 0 be such that Nm = 0. (Of course, such an m exists by [A, Remark 5.6].) If
the desired filtration exists, it must have the following properties:

(1) MkZ = 0 for all k ≤ −m.

(2) For i ≥ 0, MiZ is the preimage under N i+1 of M−i−2Z〈2 + 2i〉.
(3) For i > 0, M−iZ = N i(MiZ)〈−2i〉.

The second condition above is a restatement of the fact that N i+1 : grMi+1 Z → grM−i−1 Z〈2i+ 2〉
is injective, and the third corresponds to the fact that N i : grMi Z → grM−iZ〈2i〉 is surjective.

But it is now easy to see that the three conditions above actually determine a unique filtration
on Z. �

As explained in [SZ, Remark 2.3] (see also [I, §3.4]), there is an explicit formula for the
monodromy filtration in terms the kernel and image filtrations: we have

MkZ =
∑
p−q=k

(kerNp+1) ∩ (imN q〈−2q〉).

Theorem 10.2. The associated graded of the monodromy filtration on Z is given by

grMk Z ∼=
⊕
r,s≥0
r−s=w

E⊕n−1−r−s〈w〉.

Proof. We begin with a calculation on the underlying graded parity sheaf E♦ of Z. Unpacking
the definition of E♦, we have

E♦ =

n−1⊕
i=0

E⊕i =

n−1⊕
i=0

n−i⊕
j=1

E⊕i 〈−n+ i− 1 + 2j〉.

Let us rewrite this sum by making the following substitutions: let k = −n+i−1+2j, q = n−i−j,
and p = j−1. Then −n+1 ≤ k ≤ n−1. We have q ≥ 0 and p ≥ 0, p−q = k, and p+q = n−i−1.
Then

E♦ =

n−1⊕
k=−n+1

⊕
p,q≥0
p−q=k

E⊕n−1−p−q〈k〉.

Next, the map N is the direct sum of operators N = NE⊕i
: E⊕i → E⊕i 〈2〉 for i = 0, . . . , n− 1.

Since E♦ is a (mixed) perverse sheaf, it makes sense to consider the kernels and images of these
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operators. From the definitions, we have

kerNp+1

E⊕i
=

p+1⊕
j=1

E⊕i 〈−n+ i− 1 + 2j〉, imNq

E⊕i 〈−2q〉 =

n−i−q⊕
j=1

E⊕i 〈−n+ i− 1 + 2j〉

(kerNp+1

E⊕i
) ∩ (imNq

E⊕i 〈−2q〉) =

min{p+1,n−i−q}⊕
j=1

E⊕i 〈−n+ i− 1 + 2j〉.

Now let p and q vary, subject to the constraint that p − q = k. Let a = min{p + 1, n − i − q},
and let b = max{p+ 1, n− i− q}. We have a ≤ b and a+ b = n− i+ 1 + k, so 2a ≤ n− i+ 1 + k.
We conclude that∑

p−q=k

(kerNp+1

E⊕i
) ∩ (imNq

E⊕i 〈−2q〉) =

b(n−i+1+k)/2c⊕
j=1

E⊕i 〈−n+ i− 1 + 2j〉.

Let r = j− 1 and s = n− i− j. The conditions 1 ≤ j ≤ (n− i+ 1 + k)/2 are equivalent to r ≥ 0
and r − s ≤ k. ∑

p−q=k

(kerNp+1

E⊕i
) ∩ (imNq

E⊕i 〈−2q〉) =
⊕
w≤k

⊕
r,s≥0

r+s=n−i−1
r−s=w

E⊕i 〈w〉.

Now take the sum over all i. We conclude that∑
p−q=k

(kerNp+1) ∩ (imN q〈−2q〉) =
⊕
w≤k

⊕
r,s≥0
r−s=w

E⊕n−1−r−s〈w〉.

Let MkE
♦ denote this graded parity sheaf. Degree considerations show that the differential

on Z induces a differential on MkE
♦, so we obtain a well-defined mixed perverse sheaf MkZ.

The resulting filtration M•Z of Z satisfies the conditions of Lemma 10.1, so it must be the
monodromy filtration. The formula for the associated graded is immediate from this description.

�

11. Examples

In this section, we unpack the definition of Z and write it down explicitly for n ≤ 3. For
n = 1, we have E♦ = E⊕0 = E⊕0 = E(∅). The maps N , ε, and η are zero, so we just have

Z = E(∅)

with zero differential.
For n = 2, we have

E♦ = E⊕0 ⊕ E⊕1 = (E⊕0 〈−1〉 ⊕ E⊕0 〈1〉)⊕ E
⊕
1

= (E(∅)〈−1〉 ⊕ E(∅)〈1〉)⊕ E({1})⊕ E({2}).
We arrange these summands in order by Tate twist, and then expand the definitions of N , ε,
and η to obtain

Z = E(∅)〈1〉 (E(1)⊕ E(2)) E(∅)〈−1〉[1]

[
η̇1

−η̇2
]

[1]

−ξ̄·id

[1]

[ ε̇1 −ε̇2 ]

Alternatively, we may work with parity sequences (as defined in [AMRW]) in place of graded
parity sheaves. In this language, the shifts [1] along the arrows are absorbed into the objects,
and the whole picture looks more like a “classical” chain complex of parity sheaves. (Objects in
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mixed modular derived categories in [AR1, AR2, AMRW] were drawn in this way.) For n = 2,
our object Z looks like

Z =

E(∅){1}

E(1)⊕ E(2)

E(∅){−1}

[ ε̇1 −ε̇2 ]

[
η̇1

−η̇2
]

−ξ̄·id

For n = 3, we have

Z =

E(∅){2}

E(1){1} ⊕ E(2){1} ⊕ E(3){1}

E(1, 2)⊕ E(1, 3)⊕ E(2, 3)⊕ E(∅)

E(1){−1} ⊕ E(2){−1} ⊕ E(3){−1}

E(∅){−2}

[ ε̇1 −ε̇2 ε̇3 ]

[
ε̇2 −ε̇3 η̇1

ε̇1 −ε̇3 −η̇2

ε̇1 −ε̇2 η̇3

]
−ξ̄·[ 0 0 0 id ]

 η̇2 η̇1

−η̇3 η̇1

−η̇3 −η̇2

ε̇1 −ε̇2 ε̇3


−ξ̄·
[

id
id

id

]

[
η̇1

−η̇2

η̇3

]
−ξ̄·
[ 0

0
0
id

]

Finally, on Gr $̌1
, we can redraw these complexes using the Elias–Williamson calculus to indi-

cate the maps in the differentials. We will use different colors for the various simple reflections.
For brevity, we omit the convolution symbol ?.

For n = 2, using blue for s1 and red for s2, we have

Z =

Eω{1}

Es1Eω ⊕ Es2Eω

Eω{−1}

[
•
−
•
]
idEω

 •
− •

idEω

−ξ̄·id
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For n = 3, we use red for s1, blue for s2, and green for s3. We have

Z =

Eω{2}

Es1Eω{1} ⊕ Es2Eω{1} ⊕ Es3Eω{1}

Es2Es1Eω ⊕ Es1Es3Eω ⊕ Es3Es2Eω ⊕ Eω

Es1Eω{−1} ⊕ Es2Eω{−1} ⊕ Es3Eω{−1}

Eω{−2}

[
•
−
• •

]
idEω



•
−
•

•
•

−
•
− •

•
−
•
•


idEω

−ξ̄·[ 0 0 0 id ]



• •
− • •

− • − •
•
−
• •


idEω

−ξ̄·
[

id
id

id

]


•
− •
•

idEω

−ξ̄·
[ 0

0
0
id

]
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tion und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math. 68 (1982), 21–101.
DOI: 10.1007/bf01394268

[R] R. Reich, Notes on Beilinson’s “How to glue perverse sheaves”, J. Singul. 1 (2010), 94–115.

DOI: 10.5427/jsing.2010.1g
[RSW] S. Riche, W. Soergel, and G. Williamson, Modular Koszul duality, Compos. Math. 150 (2014), 273–332.

DOI: 10.1112/s0010437x13007483

[RW] S. Riche and G. Williamson, Tilting modules and the p-canonical basis, Astérisque 397 (2018).
[S] T. Saito, Weight spectral sequences and independence of `, J. Inst. Math. Jussieu 2 (2003), 583–634.

[SZ] J. Steenbrink and S. Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), 489–542.

DOI: 10.1007/bf01388729
[Z] X. Zhu, On the coherence conjecture of Pappas and Rapoport, Ann. of Math. (2) 180 (2014), 1–85.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

Email address: pramod@math.lsu.edu

Department of Mathematics, Boyd Graduate Studies Research Center, University of Georgia,

Athens, GA 30602, U.S.A.

Email address: laurajoy@uga.edu

https://doi.org/10.1007/s002080100250
https://doi.org/10.1515/crelle.2007.063
https://doi.org/10.1515/9783110198133.2.785
https://doi.org/10.1007/bf02684396
https://doi.org/10.1090/s0894-0347-2014-00804-3
https://doi.org/10.1007/s00222-012-0442-z
https://doi.org/10.1007/bf01394268
https://doi.org/10.5427/jsing.2010.1g
https://doi.org/10.1112/s0010437x13007483
https://doi.org/10.1007/bf01388729

	1. Introduction
	Contents
	Acknowledgments

	2. Background on the nearby cycles formalism
	2.1. Graded parity sheaves
	2.2. Three derived categories
	2.3. The nearby cycles functor

	3. Parity sheaves on affine space
	4. Direct sums of parity sheaves
	4.1. First round of direct sums
	4.2. Second round of direct sums

	5. Push-forwards from the generic part
	6. The nearby cycles sheaf for affine space
	7. Background on the affine flag variety
	7.1. The extended affine Weyl group
	7.2. The affine flag variety
	7.3. The first fundamental coweight and admissible elements

	8. Parity sheaves on the global Schubert variety
	8.1. The global Schubert variety Grpi1
	8.2. An open affine subset of Grpi1
	8.3. Parity sheaves

	9. The nearby cycles sheaf on Grpi1
	9.1. Mixed perverse sheaves on An and Grpi1
	9.2. The nearby cycles sheaf

	10. The monodromy filtration
	11. Examples
	References

