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Abstract. A real morsification of a real plane curve singularity is a real deformation given

by a family of real analytic functions having only real Morse critical points with all saddles on

the zero level. We prove the existence of real morsifications for real plane curve singularities
having arbitrary real local branches and pairs of complex conjugate branches satisfying some

conditions. This was known before only in the case of all local branches being real (A’Campo,
Gusein-Zade). We also discuss a relation between real morsifications and the topology of sin-

gularities, extending to arbitrary real morsifications the Balke-Kaenders theorem, which states

that the A’Campo–Gusein-Zade diagram associated to a morsification uniquely determines the
topological type of a singularity.

Introduction

By a singularity we always mean a germ (C, z) ⊂ C2 of a plane reduced analytic curve at its
singular point z. Irreducible components of the germ (C, z) are called branches of (C, z). Let
f(x, y) = 0 be an (analytic) equation of (C, z), where f is defined in the closed ball B(z, ε) ⊂ C2

of radius ε > 0 centered at z. The ball B(z, ε) is called the Milnor ball of (C, z) (and is
denoted in the sequel BC,z) if z is the only singular point of C in B(z, ε), and ∂B(z, η) intersects
C transversally for all 0 < η ≤ ε. A nodal deformation of a singularity (C, z) is a family of
analytic curves Ct = {ft(x, y) = 0}, where ft(x, y) is analytic in x, y, t for (x, y) ∈ B(C, z) and
t varying in an open disc Dζ ⊂ C of some radius ζ > 0 centered at zero, and where C0 = C, Ct
is smooth along ∂BC,z, intersects ∂BC,z trasversally for all t ∈ Dζ , for any t 6= 0, the curve Ct
has only ordinary nodes in BC,z, and the number of nodes does not depend on t. The maximal
number of nodes in a nodal deformation of (C, z) in B equals δ(C, z), the δ-invariant (see, for
instance, [17, §10]).

Let (C, z) be a real singularity, i.e., invariant with respect to the complex conjugation, z ∈ C
its real singular point. Denote by ReBr(C, z), ImBr(C, z) the numbers of real branches and the
pairs of complex conjugate branches centered at z, respectively. Let Ct = {ft(x, y) = 0}, t ∈ Dζ ,
be an equivariant1 nodal deformation of a real singularity (C, z). Its restriction to t ∈ [0, ζ) is
called a real nodal deformation. A real nodal deformation is called a real morsification of
(C, z) if each function ft, 0 < t < ζ, has only real critical points in B(C, z), all critical points
are Morse, and all the saddle points have the zero critical level. Clearly, then all maxima have
positive critical values, and all minima negative ones.
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N. A’Campo [1, 2, 4] and S. Gusein-Zade [15, 16] performed a foundational research on
this subject. In particular, they showed that real morsifications carry a lot of information on
singularities and allow one to compute such invariants as the monodromy and intersection form
in vanishing homology in a simple and efficient way. However, some questions have remained
open, in particular:

Question: Does any real plane curve singularity admit a real morsification?

Our main result is a partial answer to this question. Before precise formulation, we should
mention that an affirmative answer was given before in the case of all branches of (C, z) being
real (below referred to as a totally real singularity), see [1, Theorem 1]2 and [14, Theorem 4]
(see also [6, Section 4.3]). Notice that any topological type of a curve singularity is presented by
a totally real singularity, see [14, Theorem 3].

Now we give necessary definitions. A singularity is called Newton non-degenerate, if in
some local coordinates, it is strictly Newton non-degenerate, that is given by an equation
f(x, y) = 0 with a convenient Newton diagram at z = (0, 0) and such that the truncation of
f(x, y) to any edge of the Newton diagram is a quasihomogeneous polynomial without critical
points in (C∗)2 (i.e., it has no multiple binomial factors). We say that a singularity (C, z) is
admissible along its tangent line L if the singularity (CL, z) formed by the union of the
branches of (C, z) tangent to L is as follows: (CL, z) is the union of a Newton non-degenerate
singularity with a singularity, whose all branches are smooth.

Theorem 1. Let (C, z) be a real singularity, T (C, z) = {z0 = z, z1, ...} the vertices of its minimal
resolution tree. For any zi ∈ T (C, z) denote by (Ci, zi) the germ at zi of the corresponding strict
transform of (C, z). If, for any real point zi ∈ T (C, z), the singularity (Ci, zi) is admissible along
each of its non-real tangent lines, then the real singularity (C, z) admits a real morsification.

Note that the case of totally real singularities is included, since then the restrictions asserted
in Theorem are empty. We illustrate the range of singularities covered by Theorem 1 with a few
examples.

Example 1. (1) Any quasihomogeneous (in real coordinates) singularity satisfies the hypotheses
of Theorem 1, and their morsifications can be constructed in the same manner as for the totally
real singularities even if the singularity contains complex conjugate branches, see Section 2.1.2.

(2) The simplest singularity satisfying the hypotheses of Theorem 1 and whose morsification
is constructed by a new method suggested in the present paper is a pair of transversal ordinary
cuspidal branches, given, for instance, by an equation (x2 + y2)2 + x5 = 0. The real part of
its morsification looks as shown in Figure 1. One can show that all possible morsifications are
isotopic to this one.

(3) The simplest singularity beyond the range of Theorem 1 is a pair of two transversal complex
conjugate branches of order 4 with two Puiseux pairs (2, 3) and (2, 7) (equivalently, with the
Puiseux characteristic exponents (4, 6, 7)), given, for instance, by an equation

((w2
+ − x3)2 − x5w+)((w2

− − x3)2 − x5w−) = 0, w± = y ± x
√
−1 .

On the other hand, a singularity consisting of a pair of complex conjugate branches with the
same Puiseux pairs (2, 3), (2, 7) as above, but having a common real tangent does satisfy the
hypotheses of Theorem 1, since after one blow up it turns into a singularity with two complex
conjugate branches having only one Puiseux pair.

We believe that the following holds:

2As pointed to us by S. Gusein-Zade, there is a gap in the proof of [1, Theorem 1]: namely, the function in
[1, Formula (1) in page 12] does not possess the claimed properties.



MORSIFICATIONS OF REAL PLANE CURVE SINGULARITIES 309

Figure 1. Morsification of a pair of complex conjugate cuspidal branches

Conjecture 1. Any real plane curve singularity possesses a real morsification.

In the proof of Theorem 1 presented in Section 2, we combine a relatively elementary inductive
blow-up construction in the spirit of [1] with the patchworking construction as appears in [20, 21]
and some explicit formulas for real morsifications of pairs of complex conjugate smooth branches
and pairs of branches of topological type xp+yq = 0, (p, q) = 1. We expect that suitable formulas
for real morsifications of pairs of complex conjugate branches with several Puiseux pairs would
lead to a complete solution of the existence problem of real morsifications.

A real morsification of a totally real singularity yields a so-called A’Campo-Gusein-Zade
diagram, which uniquely determines the topological type of the singular point, as shown by
L. Balke and R. Kaenders [7, Theorem 2.5 and Corollary 2.6]. In Section 4, we extend this result
to morsifications of arbitrary real singularities.

1. Elementary geometry of real morsifications

For the reader’s convenience, we present here few simple and in fact known claims on morsi-
fications. In what follows we consider only real singularities.

Recall that a real node of a real curve can be either hyperbolic or elliptic, that is, analytically
equivalent over R either to x2−y2 = 0, or x2+y2 = 0, respectively. For a real nodal deformation
Ct = {ft(x, y) = 0}, 0 ≤ t < ζ, the saddle critical points of ft on the zero level correspond to
real hyperbolic nodes of Ct and vice versa.

Lemma 2. The number of hyperbolic nodes in any real nodal deformation Ct, 0 ≤ t < ζ, of
(C, z) does not exceed δ(C, z)− ImBr(C, z).

Proof. As we noticed in Introduction, the maximal number of nodes in a nodal deformation of a
singularity (C, z) is the δ-invariant δ(C, z). In a real nodal deformation, a pair Q,Q of complex
conjugate branches either glues up into one surface immersed into B(C, z) thus reducing the
total number of nodes by at least one, or Q and Q do not glue up to each other and to other
branches and then their intersection points are either complex conjugate nodes or real elliptic
nodes, and, at last, if Q and Q do not glue up to each other, but glue up to some other branches
of (C, z), we loose at least two nodes. So, the bound follows. �

The following lemma is a version of [1, Lemma 4 and Theorem 3]. Let Ct, 0 ≤ t < ζ, be
a a real morsification of a real singularity (C, z). The sets RCt, 0 < t < ζ, are isotopic in
the disc RBC,z. Each of them is called a divide of the given morsification (more information
on divides see in Section 4.1). Given a divide D ⊂ RBC,z of a real morsification of the real
singularity (C, z), the connected components of RBC,z \D disjoint from ∂RBC,z are called inner
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components. Denote by I(D) the union of the closures of the inner components of RBC,z \ D
(called body of the divide in [3]).

Lemma 3. Let D = RCt be a divide of a real morsification of a real singularity (C, z). Then

(i) if (C, z) is not a hyperbolic node then I(D) is non-empty, connected, and simply con-
nected;

(ii) D has δ(C, z)− ImBr(C, z) singularities, which are hyperbolic nodes of Ct;
(iii) each inner component of RBC,z \D is homeomorphic to an open disc;
(iv) the number h(C, z) of the inner components of RBC,z \D does not depend on the mor-

sification and satisfies the relation

h(C, z) + δ(C, z)− ImBr(C, z) = µ(C, z) ,

µ(C, z) being the Milnor number.

Proof. In claim (i) suppose that I(D) is not connected. Then the associated Coxeter-Dynkin
diagram of the singularity (C, z) constructed in [15] (see also [16, §3]) appears to be disconnected
contrary to the fact that it is always connected [12, 14]. Furthermore, I(D) is simply connected
since is has no holes by construction.

Statements (ii)-(iv) follow from claim (i), from the bound

#Sing(D) ≤ δ(C, z)− ImBr(C, z)

of Lemma 2, from the Milnor formula [17, Theorem 10.5]

µ(C, z) = 2δ(C, z)− ReBr(C, z)− 2ImBr(C, z) + 1 ,

from the fact that each inner component of RBC,z \D contains a critical point of the function
ft(x, y), and hence

h(C, z) + δ(C, z)− ImBr(C, z) ≤ µ(C, z) ,

and from the calculation of the Euler characteristic of I(D)

h(C, z)− (2 ·#Sing(D)− ReBr(C, z)) + #Sing(D) ≥ 1.

�

Remark 4. In fact, one could equivalently define real morsifications as real nodal deformations
having precisely δ(C, z)− ImBr(C, z) hyperbolic nodes as their only singularities.

Lemma 5. Given a real morsification Ct, 0 ≤ t < ζ, of a real singularity (C, z),

• any real branch P of (C, z) does not glue up with other branches and deforms into a
family of immersed discs Pt, t > 0, whose real point sets RPt ⊂ RBC,z are immersed
segments with δ(P ) selfintersetions and endpoints on ∂RBC,z;

• any pair of complex conjugate branches Q,Q of (C, z) do not glue up to other branches,
but glue up to each other so that they deform into a family of immersed cylinders Qt,
t > 0, with the real point set RQt ⊂ RBC,z being an immersed circle disjoint from

∂B(C, z) and having δ(Q ∪Q)− 1 = 2δ(Q) + (Q ·Q)− 1 selfintersections (here (Q ·Q)
denotes the intersection number);

• for any two real branches P ′, P ′′, the intersection RP ′t ∩RP ′′t , t > 0, consists of (P ′ ·P ′′)
points;

• for any real branch P and a pair of complex conjugate branches Q,Q, the intersection
RPt ∩ RQt, t > 0, consists of 2(P ·Q) points;

• for any two pairs of complex conjugate branches Q′, Q
′

and Q′′, Q
′′
, the intersection

RQ′t ∩ RQ′′t , t > 0, consists of 2(Q′ ·Q′′) + 2(Q′ ·Q′′) points.
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(a) (b)

Figure 2. Non-partitions

Proof. Straightforward from Lemmas 2 and 3. �

Lemma 6. Let (C1, z), (C2, z) be two real singularities without branches in common. If the real
singularity (C1 ∪C2, z) possesses a real morsification, then each of the real singularities (C1, z),
(C2, z) possesses a real morsification too.

Proof. Straightforward from Lemma 5. �

Given a divide D of a real morsification of a real singularity (C, z), it follows from Lemma
3 that I(D) possesses a cellular decomposition into Sing(D) as vertices, the components of
D \Sing(D), disjoint from ∂RBC,z, as the 1-cells, and the inner components of RBC,z \D as the
2-cells. Following [1, §1], we say that the given real morsification defines a partition, if, in the
above cellular decomposition of I(D), the intersection of the closures of any two 2-cells is either
empty, or a vertex, or the closure of a 1-cell.

This property was assumed in the Balke-Kaenders theorem [7, Theorem 2.5 and Corollary
2.6] about the recovery of the topological type of a singularity out of the A’Campo-Gusein-Zade
diagram. In fact, this assumption is not needed (see Section 4). Here we just notice the following:

Lemma 7. There are real morsifications that do not define a partition.

Proof. For the proof, we present two simple examples: Figure 2(a) shows a real morsification of
the singularity (y2 + x3)(y2 + 2x3) = 0 (two cooriented real cuspidal branches with a common
tangent), while Figure 2(b) shows a real morsification of the real singularity

(y2 − x4)(y2 − 2x4) = 0

(four real smooth branches quadratically tangent to each other). A construction is elementary.
For example, the morsification shown in Figure 2(a) can be defined by

(y2 + x2(x− ε1(t)))(y2 + 2(x− ε2(t))2(x− ε3(t))) = 0 ,

where 0 < ε2(t) < ε3(t)� ε1(t)� 1. �
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2. Existence of real morsifications

2.1. Blow-up construction. Let us recall that the multiplicity of a singularity (C, z), resp. of
a branch P , is the intersection numbers mt(C, z) = (C · L)z, resp. (P · L)z with a generic line
L through z. Recall that the proper transform of (C, z) under the blowing up of z consists of
several germs (C∗i , zi) with zi being distinct points on the exceptional divisor E associated with
distinct tangents to (C, z). It is know that (see, for instance, [13, Page 185 and Proposition
3.34])

(1) δ(C, z) =
∑
i

δ(C∗i , zi) +
mt(C, z)(mt(C, z)− 1)

2
, mt(C, z) =

∑
i

(C∗i · E)zi .

2.1.1. The totally real singularities. The existence of real morsifications for totally real singular-
ities was proved in [1, Theorem 1]. We present here a proof (similar to the A’Campo’s one) in
order to be self-contained and to use elements of that proof in the general case.

(1) Consider, first, the case of a totally real singularity (C, z) whose all branches are smooth.
We proceed by induction on the maximal δ-invariant ∆1(C, z) of the union of any subset of
branches tangent to each other.

The base of induction, ∆1(C, z) = 0, corresponds to the union of d ≥ 2 smooth branches with
distinct tangents. Here δ(C, z) = d(d − 1)/2, and we construct a real morsification by shifting
the branches to a general position.

Assuming that ∆1(C, z) > 0 in the induction step, we blow up the point z into an exceptional
divisor E. The strict transform of (C, z) splits into components (C∗i , zi), zi ∈ RE, corresponding
to different tangents of (C, z). Notice that E is transversal to all branches of (C∗i , zi), and hence
∆1(C∗i ∪ E, zi) < ∆1(C, z) for all i (cf. (1)). Then we construct real morsifications of each real
singularity (C∗i ∪ E, zi) in which the germs (E, zi) stay fixed (in view of Lemma 5 these germs
do not glue up with other branches, and hence can be kept fixed by suitable local equivariant
diffeomorphisms). Thus, we get the union of real curves (C∗i )+ in neighborhoods of zi, having∑

i

δ(C∗i , zi) = δ(C, z)− mt(C, z) · (mt(C, z)− 1)

2

real hyperbolic nodes and mt(C, z) real intersetion points with E. Then we blow down E and

obtain a deformation whose elements have δ(C, z) − mt(C,z)·(mt(C,z)−1)
2 real hyperbolic nodes

and a point of transversal intersection of mt(C, z) smooth branches. Deforming the latter real
singularity, we complete the construction of a real morsification.

(2) Now we prove the existence of real morsifications for arbitrary totally real singularities,
using induction on ∆2(C, z), the δ-invariant of the union of all singular branches of (C, z). The
preceding consideration serves as the base of induction. The induction step is very similar: we
blow up the point z and notice that

∑
i ∆2(C∗i ∪ E, zi) < ∆2(C, z); then proceed as in the

preceding paragraph.

2.1.2. Semiquasihomogeneous singularities. The same blow-up construction of real morsifica-
tions works well in the important particular case of semiquasihomogeneous singularities. Let

F (x, y) =
∑

pi+qj=pq

aijx
iyj

be a real square-free quasihomogeneous polynomial, where 1 ≤ p ≤ q. Then

(C, z) =
{
F (x, y) +

∑
pi+qj>pq

aijx
iyj = 0

}
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is called a real semiquasihomogeneous singularity of type (p, q). This real singularity has
d = gcd(p, q) branches, among which we allow complex conjugate pairs.

(1) A semiquasihomogeneous singularity of type (p, p) is just the union of smooth transversal
branches. If they all are real the existence of a real morsification is proved in Section 2.1.1. Thus,
suppose that F (x, y) splits into the product F1(x, y) of real linear forms and the product F2(x, y)
of positive definite quadratic forms qi(x, y), 1 ≤ i ≤ k, k ≥ 1. The forms qi are not proportional
to each other, and there are bi > 0, i = 1, ..., k, such that any two quadrics qi − bi = 0 and
qj − bj = 0, 1 ≤ i < j ≤ k, intersect in four real points, and all their intersection points are
distinct. So, we obtain a real morsification by deforming (C, z) in the family

F (x, y, t) = F1(x, y)

k∏
i=1

(qi(x, y)− bit), 0 ≤ t� 1 ,

and then by shifting each of the lines defined by F1 = 0 to a general position.

(2) Let (C, z) be a real semiquasihomogeneous singularity of type (p, q), 2 ≤ p < q. We
simultaneously prove the existence of real morsifications of (C, z) and of the following additional
singularities:

(f1) (C∪L, z), where L is a real line intersecting (C, z) at z with multiplicity p (i.e. transver-
sally) or q (tangent);

(f2) (C ∪L1 ∪L2, z), where a real line L1 intersects (C, z) with multiplicity p and a real line
L2 6= L1 intersects (C, z) at z with multiplicity p or q.

We proceed by induction on δ(C, z). The base of induction, δ(C, z) = 1, corresponds to p = 2,
q = 3, that is, an ordinary cusp. Here (C, z), (C ∪ L, z), and (C ∪ L1 ∪ L2, z) are totally real,
hence possess a real morsification. Suppose that δ(C, z) > 1, blow up the point z, and consider
the union of the strict transform of the studied singularity with the exceptional divisor E. Notice
that the strict transform of a real semiquasihomogeneous singularity of type (p, q) is also a real
semiquasihomogeneous singularity either of type (p, q−p) if 2p ≤ q, or of type (q−p, p) if 2p > q,
and in both cases it intersects E with multiplicity p. It is easy to see that the strict transform
of singularities of the form (f1) and (f2) with added E is again a real singularity of one of these
forms with parameters (p, q−p) or (q−p, p) and, may be, an extra real node. We then complete
the proof as in Section 2.1.1.

2.2. Singularities without real tangents. The constructions of morsifications presented in
this section is the mein novelty of the present paper. In the case of singularities with only
smooth branches, Lemma 8 presents a rather simple direct formula for the morsification. In
the case of non-smooth branches with one Puiseux pair (Lemma 9 below), we apply an ad hoc
deformation argument (a kind of the pathchworking construction). The geometric background for
this argument is as follows. We extend the pair (C2, (C, z)) to a trivial family (C2, (C, z))×(C, 0),
then blow up the point z ∈ C2 × {0}. The central fiber of the new family is the union of the
blown-up plane C2

1 and the exceptional divisor E ' P2. The germ (C, z) yields in P2 a real
conic C2 with multiplicity p ≥ 2 that intersects the line C2

1 ∩ E in two imaginary points. Our
deformation gives an inscribed equivariant family of curve germs, whose real part appears to be
a deformation of the above p-multiple conic C2.

2.2.1. The case of one pair of complex conjugate tangents. Let a real singularity (C, z) have ex-
actly two tangent lines, and they are complex conjugate. In suitable local equivariant coordinates
x, y in BC,z, we have z = (0, 0), and the tangent lines are

L = {x+ (α+ β
√
−1)y = 0}, L = {x+ (α− β

√
−1)y = 0} ,

where α, β ∈ R, β 6= 0.
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Denote by (Ci, z), i = 1, ..., s, the branches of (C, z) tangent to L; respectively (Ci, z),
i = 1, ..., s, are the branches of (C, z) tangent to L. Introduce the new coordinates

w = x+ (α+ β
√
−1)y, ŵ = x+ (α− β

√
−1)y .

Notice that ŵ = w if x, y ∈ R. We also will use for R2 \ {0} the coordinates ρ > 0, θ ∈ R/2πZ
such that

(2) x+ αy = ρ cos θ, βy = ρ sin θ, ρ =
√
wŵ .

Lemma 8. Let (C, z) have only smooth branches. Then (C, z) possesses a real morsification.

Proof. A branch (Ci, z), 1 ≤ i ≤ s, has an analytic equation

ŵ =
∑
n∈Ii

ainw
n, Ii ⊂ {n ∈ Z : n > 1}, ain ∈ C∗ as n ∈ Ii .

Correspondingly, (Ci, z) is given by w =
∑
n∈Ii ainŵ

n. We claim that the equation

(3) Ft(w, ŵ) :=

s∏
i=1

(Φi(w, ŵ)− t2) = 0, 0 ≤ t < ζ ,

defines a real morsification of (C, z), where

Φi(w, ŵ) =

(
ŵ −

∑
n∈Ii

ainw
n

)(
w −

∑
n∈Ii

ainŵ
n

)
and ζ > 0 is sufficiently small. First, Ft(w, ŵ) (the left-hand side of (3)) is an analytic function
in w, ŵ and t. A separate factor in Ft(w, ŵ) is

Φi(w, ŵ)− t2 = wŵ − t2 +
∑
n∈Ii

|ain|2(wŵ)n −
∑
n∈I1

(ainw
n+1 + ainŵ

n+1)

+2
∑
n1<n2
n1,n2∈Ii

(wŵ)n1(ain1
ain2

wn2−n1 + ain1
ain2

ŵn2−n1) .

Restricting the equation Φi(w, ŵ) to RBC,z (in coordinates x, y), passing in R2 \ {0} to coordi-
nates ρ > 0, θ ∈ R/2πZ defined via (2, and rescaling by substitution of tρ for ρ, we obtain a
family of curves depending on the parameter 0 ≤ t < ζ

Ψi,t := ρ2 − 1 +
∑
n∈Ii

t2n−2|ain|2ρ2n − 2
∑
n∈Ii

tn−1|ain|ρn+1 cos((n+ 1)θ − θin)

+ 2
∑
n1<n2
n1,n2∈Ii

tn1+n2−2|ain1
ain2
|ρn1+n2 cos((n2 − n1)θ + θin1

− θin2
) = 0 ,

where ain = |ain| exp(
√
−1θin), n ∈ Ii. It is easy to see that each of them a circle embedded into

an annulus {|ρ−1| < Kt} ⊂ R2 with K > 0 a constant determined by the given singularity (C, z),
and, furthermore, the normal projection of each curve to the circle ρ = 1 is a diffeomorphism.
Let 1 ≤ i < j ≤ s. Set

nij = min{n ∈ Ii ∪ Ij : ainij 6= ajnij} .
Note that nij = (Ci · Cj), the intersection number of branches Ci, Cj . On the other hand,

Ψi,t(ρ, θ)−Ψj,t(ρ, θ) = 2tnij−1|ainij
− ajnij

|ρnij+1 cos((nij + 1)θ − θij,nij
) +O(tnij ) ,
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where θij,nij ∈ R/2πZ, and hence, for a sufficiently small t > 0, the curves Ψi,t = 0 and Ψj,t = 0
intersect transversally in 2nij + 2 points. In total, we obtain

2
∑

1≤i<j≤s

(nij + 1) = 2
∑

1≤i<j≤s

(Ci · Cj) + s2 − s = δ(C, z)− ImBr(C, z)

hyperbolic nodes as required for a real morsification. �

Lemma 9. Let the singularity (CL, z) be formed by a pair of branches of topological type

xp + yq = 0, 2 ≤ p < q, (p, q) = 1,

that are tangent to L and L respectively. Then (C, z) possesses a real morsification.

Proof. (1) We start with the very special case of (C, z) given by

(4) F (w, ŵ) = wpŵp − aŵp+q − awp+q = 0, a ∈ C∗ .

Denote by P (λ) = λp + b
(0)
p−2λ

p−2 + ... + b
(0)
0 ∈ R[λ] the monic polynomial of degree p having[

p
2

]
critical points on the level −2|a| and

[
p−1
2

]
critical points on the level 2|a|, whose roots sum

up to zero (a kind of the p-th Chebyshev polynomial). We claim that there exist real functions

b0(t), ..., bp−2(t), analytic in t
1
p such that bi(0) = b

(0)
i , 0 ≤ i ≤ p− 2, and the family

(5) Ft(w, ŵ) = (wŵ − t2)p +

0∑
i=p−2

t
(p−i)(p+q)

p bi(t)(wŵ − t2)i − aŵp+q − awp+q = 0 ,

0 ≤ t < ζ ,

is a real morsification of (C, z). To prove this, we rescale the latter equation by substituting
(tw, tŵ) for (w, ŵ) and restrict our attention to RBC,z passing to the coordinates ρ, θ in (2):

(ρ2 − 1)p +

0∑
i=p−2

t
(p−i)(q−p)

p bi(t)(ρ
2 − 1)i − 2|a|ρp+q cos((p+ q)θ − θa) = 0 ,

where a = |a| exp(
√
−1θa). Next, we substitute ρ2 = 1 + t

q−p
p σ and come to

(6) (1 + t
q−p
p σ)−(p+q)/2

σp +

0∑
i=p−2

bi(t)σ
i

 = 2|a| cos((p+ q)θ − θa) .

Finally, we recover the unknown functions bp−2(t), ..., b0(t) from the following conditions.
Let P (λ) > 3|a| as |λ| > λ0. Suppose that |σ| ≤ λ0 and that t is small so that the function of

σ

Pt(σ) := (1 + t
q−p
p σ)−(p+q)/2

σp +

0∑
i=p−2

bi(t)σ
i


has simple critical points µ1(t), ..., µp−1(t) arranged in the growing order and respectively close

to the critical points µ
(0)
1 , ..., µ

(0)
p−1 of P (λ). So, we require

(7) Pt(µi(t)) = (−1)i · 2|a|, i = 1, ..., p− 1 .

These conditions hold true for t = 0 by construction, and we only need to verify that the
Jacobian with respect to µ1, ..., µp−1 does not vanish. To this end, we observe that there exists a

diffeomorphism of a neighborhood of the point (µ
(0)
1 , ..., µ

(0)
p−1) ∈ Rp−1 onto a neighborhood of the

point (b
(0)
p−2, ..., b

(0)
0 ) ∈ Rp−1 sending the critical points of a polynomial λp + b̃p−2λ

p−2 + ...+ b̃0
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to its coefficients. Then the Jacobian of the left-hand side of the system (7) with respect to
µ1, ..., µp−1 at t = 0 turns to be

det

(
(µ

(0)
i )j

∂bj
∂µi

∣∣∣
t=0

)j=0,...,p−2

i=1,...,p−1
= ±

∏
1≤i<j≤p−1

(µ
(0)
i − µ

(0)
j ) · det

D(̃bp−2, ..., b̃0)

D(µ1, ..., µp−1)

∣∣
t=0
6= 0 .

It follows from (7) that, for any θ ∈ R/2πZ, the equation (6) on σ has p real solutions (counting
multiplicities) in the interval |σ| < λ0, and we have exactly (p− 1)(p+ q) = δ(C, z)− ImBr(C, z)
double roots as

σ = µ2i−1(t), cos((p+ q)θ − θa) = −1, 1 ≤ i ≤ p

2
,

or

σ = µ2i(t), cos((p+ q)θ − θa) = 1, 1 ≤ i ≤ p− 1

2
.

That is, family (5) indeed describes a real morsification of (C, z).

Note, that the real curve {Ft = 0} ⊂ RBC,z is an immersed circle lying in the λ0t
p+q
p -

neighborhood of the ellipse ρ = t and transversally intersecting in 2p points (counting multiplic-
ities) with each real line through the origin.

(2) Consider the general case. By a coordinate change

(w, ŵ) 7→

w +
∑
i≥2

αiŵ
i, ŵ +

∑
i≥2

αiw
i


one can bring (C, z) to a strictly Newton non-degenerate form with the Newton diagram

Γ(F ) = [(p+ q, 0), p, p)] ∪ [(p, p), (0, p+ q)]

in the coordinates w, ŵ (see Figure 3(a)), and with an equation

F (w, ŵ) = (wŵ)p − aŵp+q − awp+q +
∑

pi+qj>p(p+q)
qi+pj>p(p+q)

aijw
iŵj = 0 ,

where a ∈ C∗ and aij = aji for all i, j (cf. (5)). We construct a real morsification of (C, z)
combining the result of the preceding step with the patchworking construction as developed in
[21, Section 2].

Denote by ∆(F ) the Newton polygon of F (w, w̃) and divide the domain under Γ(F ) by the
segment [(0, 0), (p, p)] into two triangles T1, T2 (see Figure 3(b)). So, ∆(F ), T1, and T2 form

a convex subdivision of the convex polygon ‹∆(F ) = Conv(∆(F ) ∪ {(0, 0)}), i.e., there exists a

convex piecewise linear function ν : ‹∆(F )→ R taking integral values at integral points and whose
linearity domains are ∆(F ), T1, and T2. The overgraph Graph+(ν) of ν is a three-dimensional
convex lattice polytope, and we have a natural morphism Tor(Graph+(ν))→ C whose fibers for

t ∈ C∗ are isomorphic to Tor(̃(F )), and the central fiber is the union

Tor(∆(F )) ∪ Tor(T1) ∪ Tor(T2).

In the toric surface Tor(∆(F )), we have a curve C = {F (w, ŵ) = 0}, in the toric surfaces Tor(T1)
and Tor(T2), we define curves

R1 = {(wŵ − 1)p − awp+q = 0} and R2 = {(wŵ − 1)p − aŵ = 0} ,
respectively. The complex conjugation interchanges the pairs (Tor(T1), R1) and (Tor(T2), R2).
Note that R1, R2 transversally intersect the toric divisors

Tor([(p, p), (p+ q, 0)]) and Tor([(p, p), (0, p+ q)])
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Figure 3. Patchworking a real morsification

in the same points as C. Furthermore, R1, R2 are rational curves intersecting the toric divisor
Tor([(0, 0), (p, p)] = Tor(T1) ∩ Tor(T2) in the same point z1, where each of them has a singular
point of topological type xp + yp+q = 0. To apply the patchworking statement of [21, Theorem
2.8], we perform the weighted blow up X→ Tor(Graph+(ν)) of the point z1 with the exceptional
divisor E = Tor(T ), T = Conv{(p, 0), (0, p+ q), (0,−p− q)} (see [21, Figure 1]) being a part of
the central fiber of X→ C.

One can view this blow up via the refinement procedure developed in [20, Section 3.5]. Namely,
we perform the toric coordinate change u = wŵ, v = w−1, transforming the triangles T1, T2
to T ′1, T

′
2 as shown in Figure 3(c), and respectively transforming the curves R1, R2 and the

function ν. Note that this coordinate change defines an automorphism of the punctures real
plane R2 \ {0}. Next we perform another coordinate change u = u1 + 1, v = v1, bringing
the singular points of R1, R2 to the origin and transforming their Newton triangles T ′1, T

′
2 into

the edge T ′′1 = [(p, 0), (0,−p − q)] and the triangle T ′′2 = Conv{(0, p + q), (p, 0), (p + q, p + q)},
respectively (see Figure 3(d)). The triangle T = Conv{(0,−p− q), (0, p+ q), (p, 0)} corresponds
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to the exceptional surface, in which we have to define a real curve by an equation with Newton
triangle T , having the coefficients at the vertices determined by the equations of R1 and R2 and
having (p− 1)(p+ q) = δ(C, z)− ImBr(C, z) real hyperbolic nodes. We just borrow the required
curve from the special example studied in the first step. Namely, we do the above transformations
with the data given by (4), and arrive at the curve given by a polynomial having coefficient a

at (0, p + q), coefficient a at (0,−p − q), coefficient 1 at (p, 0), and coefficients b
(0)
i at (i, 0),

i = 0, ..., p− 2.
To apply [21, Theorem 2.8], we have to verify the following transversality conditions:

• for i = 1, 2, the germ at Ri of the family of curves on the surface Tor(Ti) in the tauto-
logical linear system that have a singularity of the topological type xp + yp+q = 0 in a
fixed position, is smooth of expected dimension;

• the germ at R of the family of curves on the surface Tor(T ) in the tautological linear
system that intersect the toric divisors Tor([(0,−p−q), (p, 0)]) and Tor([(p, 0), (0, p+q)])
in fixed points and have (p− 1)(p+ q) nodes, is smooth of expected dimension.

Both conditions are particular cases of the S-transvesality property, and they follow from the
criterion in [19, Theorem 4.1(1)]. In the former case, one needs the inequality −RiKi > b, where
Ki is the canonical divisor of the surface Tor(Ti), and b a topological invariant of the singularity
defined by

b(xp + yp+q = 0) =

{
p+ (p+ q)− 1, if q 6≡ 1 mod p,

p+ (p+ q)− 2, if q ≡ 1 mod p

and the inequality holds, since −RiKi = p + (p + q) + 1. In the latter case, one needs the
inequality

R · Tor([(0, p+ q), (0,−p− q)]) > 0

(nodes do not count in the criterion), which evidently holds.
Thus, [21, Theorem 2.8] yields the existence of an analytic equivariant deformation of F (w, ŵ)

defining in RBC,z curves with (p− 1)(p+ q) = δ(C, z)− ImBr(C, z) hyperbolic nodes. �

Lemma 10. Let a real singularity (C, z) with exactly two tangent lines L,L be admissible along
its tangent lines. Then (C, z) possesses a real morsification.

Proof. We apply construction presented in the proof of Lemmas 8 and 9 for the bunch of smooth
branches a nd for pairs of singular complex conjugate branches separately, and we shall show
that, for any two pairs (C1, C1), (C2, C2) of complex conjugate branches of (C, z), their divides
intersect in 2(C1 · C2) + 2mtC1 ·mtC2 (real) points.

For C1, C2 smooth this follows from Lemma 8. In other situations, we can assume that C1∪C2

(and C1 ∪ C2) form a strictly Newton non-degenerate singularity so that C1 os of topological

type xp + yq = 0 with 2 ≤ p < q, (p, q) = 1, and C2 is of topological type xp
′

+ yq
′

= 0 with
1 ≤ p′ < q′, (p′, q′) = 1.

If q/p = q′/p′, then p = p′, q = q′, and hence C1 ∪ C1 and C2 ∪ C2 are given by

F (w, ŵ) = (wŵ)p − aŵp+q − awp+q +
∑

pi+qj>p(p+q)
qi+pj>p(p+q)

aijw
iŵj = 0 ,

and
F ′(w, ŵ) = (wŵ)p − a′ŵp+q − a′wp+q +

∑
pi+qj>p(p+q)
qi+pj>p(p+q)

a′ijw
iŵj = 0 ,

respectively, where a, a′, a − a′ ∈ C∗. The patchworking construction in the second step of the
proof of Lemma 9 can be applied to both the pairs of the branches simultaneously, and the
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considered question on the intersection of the divides reduces then to the intersection of the
curves R,R′ in the toric surface Tor(T ), T = Conv{(0,−p− q), (p, 0), (0, p+ q)}. The real parts
RR,RR′ of these curves, in suitable coordinates σ > 0, θ ∈ R/2πZ are given by

σp +

0∑
i=p−2

b
(0)
i σi = 2|a| cos((p+ q)θ − θa), σp +

0∑
i=p−2

b
(0)
i σi = 2|a′| cos((p+ q)θ − θa′) ,

respectively. The number of their (real) intersection points is p times the number of solutions of
the equation

|a| cos((p+ q)θ − θa) = |a′| cos((p+ q)θ − θa′), θ ∈ R/2πZ .

The latter number is 2(p+ q), and hence the total number of intersection points is

2p(p+ q) = 2pq + 2p2 = 2(C1 · C2) + 2mtC1 ·mtC2

as required.

Suppose that τ = q′

p′ −
q
p > 0. Then C1 ∪ C1 and C2 ∪ C2 are given by

F (w, ŵ) = (wŵ)p − aŵp+q − awp+q +
∑

pi+qj>p(p+q)
qi+pj>p(p+q)

aijw
iŵj = 0 ,

and

F ′(w, ŵ) = (wŵ)p
′
− a′ŵp

′+q′ − a′wp
′+q′ +

∑
p′i+q′j>p′(p′+q′)
q′i+p′j>p′(p′+q′)

a′ijw
iŵj = 0 ,

respectively. Along the construction of Lemmas 8 and 9, we substitute in the above equations
(wŵ − t2)p for (wŵ)p and (wŵ − t2)p

′
for wŵ)p

′
, respectively, then make the same rescaling

(w, ŵ) 7→ (tw, tŵ). Next, we pass to the real coordinates σ, θ via

ρ2 = wŵ = 1 + t
q−p
p σ, w = ρ exp(

√
−1θ), ŵ = ρ exp(−

√
−1θ) ,

(adapted to the pair p, q, not p′, q′ !). Then the real morsification of C1 ∪ C1 is given by

σp +

0∑
i=p−2

b
(0)
i σi = 2|a| cos((p+ q)θ − θa) +O(t

1
p ) ,

while the real morsification of C2 ∪ C2 is given by σp
′

= O(ttau). The divide of the real

morsification of C2 ∪ C2 is the circle immersed into the O(t
1
p′ )-neighborhood of the level line

σ = 0 in the annulus {(σ, θ) ∈ (−λ0, λ0)×(R/2πZ)} so that the normal projection onto the circle
σ = 0 is a p′-fold covering. Hence, this divide intersects with the divide of the real morsification
of C1 ∪ C1 in 2p′(p+ q) = 2p′q + 2p′p = 2(C1 · C2) + 2mtC1 ·mtC2 real points.

The case of τ = q
p −

q′

p′ < 0 can be considered in the same manner. �

2.2.2. The case of several pairs of complex conjugate tangents. Suppose now that (C, z) has
r ≥ 2 pairs of complex conjugate tangent lines

Li = {x+ (αi + βi
√
−1)y = 0}, Li = {x+ (αi − βi

√
−1)y = 0}, i = 1, ..., r ,

where αi, βi ∈ R, βi 6= 0 for all i = 1, ..., r. Set

wi = x+ (αi + βi
√
−1)y, ŵi = x+ (αi − βi

√
−1)y, i = 1, , , ., r .

Equations ρ2i := wiŵi = const > 0, i = 1, ..., r, define distinct ellipses in R2, and there are
γ1, ..., γr > 0 such that each two ellipses ρ2i = γi, ρ

2
j = γj , 1 ≤ i < j ≤ r, intersect in four (real)

points, and all 2r(r − 1) intersection points are distinct.
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For any i = 1, ..., r, we introduce a real singularity (C(i), z) formed by the union of all the
branches of (C, z) tangent either to Li, or to Li, and then construct a real morsification of
(C(i), z) following the procedure of Section 2.2.1, in which t should be replaced by t

√
γi. For a

given t > 0, the divide of this morsification lies in O(t>2)-neighborhood of the ellipse ρ2i = γit
2,

and it is the union of several immersed circles so that the normal projection onto the ellipse is
a covering of multiplicity 1

2mt(C(i), z). Hence, the divides of the morsifications of (C(i), z) and

C(j), z), 1 ≤ i < j ≤ r, intersect in mtC(i) · mtC(j) real points. So, in total the union of all r
divides contains

r∑
i=1

(
δ(C(i), z)− ImBr(C(i), z)

)
+

∑
1≤i<j≤r

(C(i) · C(j))z = δ(C, z)− ImBr(C, z)

real hyperbolic nodes.

2.3. Proof of Theorem 1: general case. Suppose now that (C, z) is a real singularity satis-
fying hypotheses of Theorem 1. Denote by (Cre, z), resp. (Cim, z), the union of the branches of
(C, z) that have real, resp. complex conjugate tangents.

If Cre = ∅, the existence of a real morsification follows from the results of Sections 2.2.1 and
2.2.2. Assume that Cre 6= ∅, and it contains only smooth branches. We settle this case by
induction on ∆3(C, z), the maximal δ-invariant of a subgerm of (Cre, z) having a unique tangent
line. If ∆3(C, z) = 0, then all branches of (Cre, z) are smooth real and transversal to each other.
Then we first construct a real morsification of (Cim, z) as in Sections 2.2.1 and 2.2.2 with t > 0
chosen so small that each branch of (Cre, z) intersects the divide of the morsification of (Cim, z)
in mt(Cim, z) real points. Then we slightly shift the branches of (Cre, z) in general position
keeping the above real intersection points and obtaining additional δ(Cre, z) hyperbolic nodes as
required. In the case of ∆3(C, z) > 0, we blow up the point z and consider the strict transform
of (Cre, z), which consists of germ (Ci, zi) with real centers zi on the exceptional divisor E.
Clearly, for each germ (Ci ∪ E, zi), its branches with real tangents are smooth and transversal
to E, and, furthermore, ∆3(Ci ∪E, zi) < ∆3(C, z) for all i. Hence, there are real morsifications
of the germs (Ci ∪ E, zi), in which we cam assume the germs (E, zi) to be fixed. Then we blow
down E and obtain a deformation of (Cre, z) with mt(Cre, z) real smooth transversal branches
at z and additional δ(Cre, z)− ImBr(Cre, z)− 1

2mt(Cre, z)(mt(Cre, z)−1) real hyperbolic nodes

(cf. computations in Section 2.1.1(1)). Returning back the subgerm (Cim, z), we obtain a real
singularity at z with ∆3 = 0, and thus, complete the construction of a real morsification of (C, z)
as in the beginning of this paragraph.

Now we get rid of all extra restrictions on (Cre, z) and prove the existence of a real morsifica-
tion of (C, z) by induction on ∆4(C, z), which is the δ-invariant of the union of singular branches
of (Cre, z). The preceding consideration serves as the base of induction. The induction step is
precisely the same, and we only notice that (in the above notations)

max ∆4(Ci ∪ E, zi) < ∆4(C, z).

The proof of Theorem 1 is completed.

3. Real morsifications and Milnor fibers

3.1. A’Campo surface and Milnor fiber. In [2, Section 3], A’Campo constructs the link of
a divide of a real morsification of a singularity (which we call A’Campo link). This link is
embedded into the 3-sphere, the boundary of the Milnor ball, and the fundamental result by
A’Campo [2, Theorem 2] states that it is isotopic to the link of the given singularity in the
3-sphere. In this section, we discuss a somewhat stronger isotopy. Namely, in [2, Section 3],
A’Campo associates with a real morsification a surface (which we call A’Campo surface),
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whose boundary is the A’Campo link. It is natural to ask whether the pair (A’Campo surface,
A’Campo link) is isotopic to the pair (Milnor fiber, its boundary).

In [2, Page 22], A’Campo conjectures a certain transversality condition for the known morsi-
fications that ensure the discussed transversality. Here we prove this transversality condition for
all morsifications constructed in Section 2. We also show that the spoken transversality condi-
tion may fail even for morsifications of simple singularities. Hence, the question on the isotopy
between the A’Campo surface and the Milnor fiber remains open in a general case.

Let (C, 0) ⊂ C2 be a real singularity given by an equivariant analytic equation f(x, y) = 0.
Following [2, Section 3], we replace the standard Milnor ball B(C, 0) by the bi-disc

B(0, ρ0) := {u+ v
√
−1 ∈ C2 : u, v ∈ D(0, ρ0) ⊂ R2},

where ρ0 > 0 and C2 = R2 ⊕ R2
√
−1. It is easy to verify that ∂B(0, ρ) transversally intersects

with C for each 0 < ρ ≤ ρ0 if ρ0 is small enough, and we assume this further on. For ξ ∈ C with
0 < |ξ| � 1 all curves Mξ = {f(x, y) = ξ} ⊂ B(0, ρ0) are smooth and transversally intersect
∂B(0, ρ0). They are called Milnor fibers of the given singularity (C, 0). Respectively, the links
LMξ = Mξ∩∂B(0, ρ0) are isotopic in the sphere ∂B(0, ρ0) to the link L(C, z) = C∩∂B(0, ρ0) of
the singularity (C, z), and the pairs (Mξ, LMξ), 0 < |ξ| � 1, are isotopic in (B(0, ρ0), ∂B(0, ρ0)).

Introduce the family of bi-discs

B′ρ(0, ρ0) = {u+ v
√
−1 ∈ C2 : u ∈ D(0, ρ0), v ∈ D(0, ρ)}, 0 < ρ ≤ ρ0 .

By definition, B′ρ0(0, ρ0) = B(0, ρ0). Let Ct = {ft(x, y) = 0}, 0 ≤ t ≤ t0, f0 = f , be a real
morsification of (C, 0) defined in B(0, ρ0). Without loss of generality, we can assume that Ct
intersects with ∂B(0, ρ0) transversally for all 0 ≤ t ≤ t0.

We have two families of singular surfaces in B(0, ρ0):

• F (ρ) = Ct0 ∩B′ρ(0, ρ0), 0 ≤ ρ ≤ ρ0,

• R(ρ) = {u + v
√
−1 ∈ B′ρ(0, ρ0) : u ∈ RCt0 , v ∈ TuRCt0 , v ∈ D(0, ρ)}, 0 ≤ ρ ≤ ρ0

(here RCt0 ⊂ D(0, ρ0) is an immersed real analytic curve with nodes, and at each node
u ∈ RCt0 we understand TuRCt0 as the union of the tangent lines to the branches
centered at u).

Denote LF (ρ) = F (ρ) ∩ ∂B′ρ(0, ρ0) and LR(ρ) = R(ρ) ∩ ∂B′ρ(0, ρ0) for all 0 < ρ ≤ ρ0.

Lemma 11. [cf. [2], Theorem 2] (1) The set LR(ρ) is a link in the sphere ∂B′(ρ) for any
0 < ρ ≤ ρ0. The set LF (ρ) is a link in the sphere ∂B′ρ(0, ρ0) for all but finitely many values
ρ ∈ (0, ρ0]. Furthermore, LF (ρ0) is a link equivariantly isotopic in ∂B(0, ρ0) to the singularity
link L(C, z).

(2) There exists ρ′ = ρ′(t0) such that the links LF (ρ′) and LR(ρ′) are equivariantly isotopic
in ∂B′ρ′(0, ρ0), and the pairs (F (ρ′), LF (ρ′)) and (R(ρ′), LR(ρ′)) are equivariantly isotopic in

(B′ρ′(0, ρ0), ∂B′ρ′(0, ρ0)).

Proof. The first statement is straightforward. The second one immediately follows from the fact
that F (ρ) and R(ρ) are immersed surfaces having the same real point set with the same tangent
planes along it. �

For η > 0 small enough, the algebraic curves

F sm(ρ) = {ft0(x, y) = η} ∩B′ρ(0, ρ0)

are smooth for all ρ′(t0) ≤ ρ ≤ ρ0, and each of them is obtained from F (ρ) by a small deformation
in a neighborhood Uu of each node u ∈ RCt0 that replaces two trasversally intersecting discs with
a cylinder. Respectively, for all ρ′(t0) ≤ ρ ≤ ρ0, we define C∞-smooth equivariant A’Campo
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surfaces Rsm(ρ) ⊂ B′ρ(0, ρ0), obtained from R(ρ) by replacing R(ρ) ∩ Uu with the cylinder
F sm(ρ) ∩ Uu smoothly attached to R(ρ) \ Uu for each node u ∈ RCt0 .

If ξ ∈ C \ {0} with |ξ| small enough, then the intersections Mξ ∩ ∂B′(ρ) are transversal for all
ρ′(t0) ≤ ρ ≤ ρ0. We would like to address

Question. Is the pair (Rsm(ρ0), LR(ρ0)) isotopic to (Mξ, LMξ) in (B(0, ρ0), ∂B(0, ρ0)), or,
equivalently, is the pair (Rsm(ρ′(t0)), LR(ρ′(t0))) isotopic to (Mξ∩B′(ρ′(t0)),Mξ∩∂B′ρ′(t0)(0, ρ0)

in (B′ρ′(t0)(0, ρ0), ∂B′ρ′(t0)(0, ρ0))?

This seems to be stronger that Lemma 11. We would like to comment on this question
more. Since (F sm(ρ0), F sm(ρ0) ∩ ∂B(0, ρ0)) is isotopic to (Mξ, LMξ) in (B(0, ρ0), ∂B(0, ρ0)),
and, by Lemma 11, (F sm(ρ′(t0)), F sm(ρ′(t0)) ∩ ∂B′ρ′(t0)(0, ρ0)) is (equivariantly) isotopic to

(Rsm(ρ′(t0)), LR(ρ′(t0))) in B′ρ′(t0)(0, ρ0), ∂B′ρ′(t0)(0, ρ0)), the answer to the above Question

would be yes, if we could prove one of the following claims. Observe that the closure of
Rsm(ρ0) \ Rsm(ρ′(t0)) as well as the closure of F sm(ρ0) \ F sm(ρ′(t0)) is the disjoint union of
pairs of discs (corresponding to real branches of (C, z)) and cylinders (corresponding to pairs
of complex conjugate branches of (C, z)), and the former surface defines a cobordism of LR(ρ0)
and LR(ρ′(t0)) trivially fibred over [ρ′(t0), ρ0]. So the requested claims are

(A) The surface Closure(F sm(ρ0) \ F sm(ρ′(t0))) defines a trivial cobordism of

F sm(ρ0) ∩ ∂B(0, ρ0) and F sm(ρ′(t0)) ∩ ∂B′ρ′(t0)(0, ρ0).

(B) The intersections Ct ∩ ∂B′ρ′(t0)(0, ρ0) are trasversal for all 0 ≤ t ≤ t0.

Claim (A) seems to be open in general so far, and it is proved in [18] for morsifications of
totally real singularities obtained by the blowing up construction as in [1] (see also [11, Theorem
5.2]). Claim (B) is formulated in [2, Page 22] as a conjecture again for the morsifications of
totally real singularities constructed in [1]. However, in general, it does not hold:

Proposition 12. The totally real singularity (C, z) given by y2 − x2n = 0, n ≥ 4, possesses a
real morsification Ct, 0 ≤ t ≤ t0 such that for arbitrary 0 < ρ < ρ0 and 0 < t < t0, there exist
0 < ρ′ < ρ and 0 < t′ < t for which the intersection of Ct′ and ∂B′ρ′(0, ρ0) is not transversal.

Proof. We have ∂B′ρ(0, ρ0) = (∂D(0, ρ0)×D(0, ρ)) ∪ (D(0, ρ0)× ∂D(0, ρ)). The intersection of
Ct with ∂D(0, ρ0)×D(0, ρ) is transversal for any real morsification of (C, z). On the other hand,
the intersection of Ct with D(0, ρ0)× ∂D(0, ρ) is not transversal at some point

p = u+ v
√
−1 ∈ D(0, ρ0)× ∂D(0, ρ)

if and only if the tangent line to Ct at this point has a real slope. Indeed, if Ct is given in a
neighborhood of p by y = ϕ(x), then the lack of transversality of the intersection of Ct and
D(0, ρ0)× ∂D(0, ρ) at p can be expressed as

Im
dϕ

dx

∣∣
p
· v2 = v1 − Re

dϕ

dx

∣∣
p
· v2 = 0, where v = (v1, v2) 6= 0 ,

and hence Imdϕ
dx

∣∣
p

= 0. In other words, the lack of transversality means the existence of a real

slope tangent line to Ct at a non-real point.
Now we define

Ct =

{
(y − tx2)2 −

n∏
k=1

(x− kt)2 = 0

}
, 0 ≤ t ≤ t0, 0 < t0 � 1 .



MORSIFICATIONS OF REAL PLANE CURVE SINGULARITIES 323

The real point set of Ct consist of two branches y = tx2±
∏n
k=1(x−kt) transversally intersecting

in n points, and hence it is a real morsification. It is easy to compute that the branch

y = tx2 +

n∏
k=1

(x− kt)

has n− 2 tangent lines with the zero slope at the points

xi(t) = λi
(

2

n

)1/(n−2)

t1/(n−2)(1 +O(t>0)), i = 0, ..., n− 3 ,

where λn−2 = −1 is a primitive root of unity. Thus, we obtain at least n− 3 zero slope tangents
at imaginary points. Since xi(t)→ 0 as t→ 0, the statement of Proposition follows. �

3.2. Real Milnor morsifications. We say that a real morsification of a real singularity (C, z)
is a real Milnor morsification if in the notation of Section 3.1, the pair (Rsm(ρ0), LR(ρ0)) is
isotopic to (Mξ, LMξ) in (B′ρ(z, ρ0), ∂B′ρ(z, ρ0)) for some 0 < ρ ≤ ρ0.

Theorem 2. Any isolated real plane curve singularity satisfying the hypotheses of Theorem 1
admits a real Milnor morsification.

Proof. We prove the theorem by establishing Claim (B) formulated in the preceding section.
Let (C, z) be a real singularity as in Theorem 1. Applying a suitable local diffeomorphism,

we can assume that (C, z) does not contain (segments of) straight lines, and hence (L ·C)z <∞
for any line L through z. Denote by Λ the union of all real tangent lines to (C, z) at z. Under
the assumption made, we apply the construction used in the proof of Theorem 1 and obtain a
real morsification of (C ∪ Λ, z), in which Λ remains fixed. Then we get rid of Λ and obtain a
real morsification Ct, 0 ≤ t ≤ t0, of (C, z). We shall show that it is a real Milnor morsification
(possibly replacing t0 with a smaller positive number).

As noticed in the proof of Proposition 12, the required property is equivalent to the absence
of non-real lines with real slopes tangent to Ct, 0 ≤ t ≤ t0.

Our first observation is

Lemma 13. Let (C, z) be a real singularity, L a real line passing through z and intersecting
(C, z) only at z (in the Milnor ball), with a finite multiplicity (L · C)0. Denote by PL the germ
of the pencil of the lines parallel to L and by RPL its real point set. Let Ct, 0 ≤ t < ε, be a
real morsification of (C, z) as above, and let Ct and Lt intersect in (L · C)z real points for any
t ∈ (0, ε). Then each line L′ ∈ PL \ RPL intersects each element Ct, 0 < t < ε, transversally.

Proof. Let C ′ be a Milnor fiber. Then the lines of PL in total are tangent to C ′ in

κ(C, z) + (L · C)z −mt(C, z)

points, where κ(C, z) is the class of the singularity (C, z) (see, for example, [13, Section I.3.4]
for details). Since, for a node, κ = 2, and in general

κ(C, z) = 2δ(C, z) + mt(C, z)− Br(C, z),

we get that the lines of PL in total are tangent to Ct in

κ(C, z) + (L · C)z −mt(C, z)− 2(δ(C, z)− ImBr(C, z)) = (L · C)z − ReBr(C, z)

points. It follows that

• L intersects the morsification Ci,t of any real branch (Ci, z) of (C, z) in (L · Ci)z real
points, while the real point set RCi,t of Ci,t is an immersed segment; that is, L cuts
RCi,t into (L · Ci) + 1 immersed segments, among all but two have both endpoints on
RL; hence, varying L in RPL, we encounter at least (L · Ci)z − 1 real tangency points;



324 PETER LEVIANT AND EUGENII SHUSTIN

• L intersects the morsification Cj,t of a pair of complex conjugate branches (Cj , z), Cj , z)
of (C, z) in 2(L · Ci)z real points, and hence it cuts RCj,t (which is an immersed circle)
into 2(L ·Ci)z immersed segments, whose all endpoints lie on RL, and hence, varying L
in RPL, we encounter at least 2(L · Ci)z real tangency points.

The claim of Lemma follows. �

Remark that, under conditions of Lemma 13, there is an open neighborhood UL of L in the
dual plane P2,∨ such that all non-real curves with real slopes intersect each curve Ct, 0 < t < ε,
transversally. Thus, Theorem 2 follows from

Lemma 14. For any real line L through z, there exist 0 < ρ ≤ ρ0 satisfying the following
conditions

• L ∩ C ∩B′ρ(z, ρ0) = {z};
• for some ε > 0, L intersects with any curve Ct, 0 < t < ε, in (L · C)z real points

(counting multiplicities).

Proof. Let L1, ..., Lk be all real tangent lines to (C, z) at z. Write (C, z) =
⋃
i(Ci, z), where

(Ci, z) either has a unique (real) tangent line, or a pair of complex conjugate tangent lines, and
(Ci, z), (Cj , z) have no tangent in common as i 6= j. We can consider morsifications of (Ci, z)
separately.

Suppose that (Ci, z) has a pair of complex conjugate tangent lines. The morsification of
(Ci, z) constructed in Section 2.2.1 is such that the real point set of Ct, 0 < t < ε, consists of
one or several immersed circles going in total 1

2mt(Ci, z) times around z, and hence L (which is
transversal to (Ci, z), i.e. (L · Ci)z = mt(Ci, z)) intersects any curve Ct in mt(Ci, z) real points
(counting multiplicities).

Suppose that (Ci, z) has a unique (real) tangent line Lz, and L 6= Lz. Then

(L · Ci)z = mt(Ci, z).

The smooth real branches of (Ci, z) are deformed in any morsification so that they remain
transversal to L and intersect L at one real point. For (C ′i, z), the union of the other branches of
(Ci, z), the construction of a morsification presented in Section 2.3 goes inductively. Namely, we
blow up z, construct a morsification of the strict transform of (Ci, z) united with the exceptional
divisor and then blow down the exceptional divisor. Elements of this intermediate deformation
have mt(C ′i, z) smooth real branches centered at z, all transversal to L, and in any further
deformation they intersect with L in mt(C ′i, z) real points.

If (Ci, z) has a unique (real) tangent line Lz, and L = Lz, the statement follows from the
construction. �

Therefore, we have proved Theorem 2. �

4. A’Campo-Gusein-Zade diagrams and topology of singularities

4.1. AΓ-diagrams of real morsifications. L. Balke and R. Kaenders proved [7, Theorem
2.5 and Corollary 2.6] that the A’Campo-Gusein-Zade diagram (briefly, AΓ-diagram) associated
with a morsification of a totally real singularity determines the complex topological type of the
given singularity. Here we extend this result to real morsifications of arbitrary real singularities.
We get rid of the requirement for morsifications to define a partition (see Section 1 and [7,
Definition 1.2]) and prove that an AΓ-diagram determines the topological type of the singularity
as well as some additional information on its real structure.

Let us recall definitions from [5] and [7].
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A subset D of a closed disc D ⊂ R2 is called a connected divide if it is the image of an
immersion of a disjoint union Σ 6= ∅ of a finite number of segments I = [0, 1] and circles S1

satisfying the following conditions:

• the set of the endpoints of all the segments in Σ is injectively mapped to ∂D, whereas
the other points of Σ are mapped to the interior of D;

• each point of the complement D \Sing(D) to a finite set Sing(D) has a unique preimage
in Σ, each point of Sing(D) is a transversal intersection of two smooth local branches;

• the images of any two connected components of Σ intersect each other.

Note that Σ is uniquely determined by D. The image of any connected component of Σ is a
divide, which is called a branch of the divide D.

The divide of a real morsification of a real singularity placed in the real Milnor disc (see
Section 1) is a connected divide in the above sense.

Connected components of D \ D and of D \ Sing(D), disjoint from ∂D, are called inner
components. Clearly, each inner component of D\D is homeomorphic to an open disc, and each
inner component of D \Sing(D) is homeomorphic either to an open interval, or to S1 if D ' S1.

It is straightforward that the set π0(D \ D) of the connected components of D \ D can be
2-colored, i.e., there exists a function π0(D \ D) → {±1} such that the components, whose
boundaries intersect along one-dimensional pieces of D, have different signs, and there are pre-
cisely two functions like that (cf. [7, Proposition 1.4]). Fix a 2-coloring s : π0(D \D)→ {±1}.
The A’Campo-Gusein-Zade diagram (AΓ-diagram) of a connected divide D is a 3-colored
graph AΓ(D) = (V,E, c) such that

• the set V of its vertices is in one-to-one correspondence with the disjoint union of Sing(D)
(the set of •-vertices in the notation of [7]) and the set πinn0 (D \D) of the inner compo-
nents of D \D (the ⊕-vertices and 	-vertices in the notation of [7] in accordance with
the chosen coloring);

• two distinct vertices K1,K2 ∈ πinn0 (D\D) such that ∂K1∩∂K2\Sing(D) 6= ∅ are joined
by k edges, where k is the number of inner components of D\Sing(D) inside ∂K1∩∂K2;

• two vertices K ∈ πinn0 (D \D) and p ∈ Sing(D) such that p ∈ ∂K are joined by k edges,
where k is the number of components of the intersection of K with a small disc centered
at p (clearly, here k = 1 or 2);

• the 3-coloring c : V → {±1, 0} is defined by c(K) = s(K), K ∈ πint0 (D \ D), and
c(p) = 0, p ∈ Sing(D).

Comparing with [7, Definition 1.5], we admit multi-graphs, i.e., vertices can be joined by several
edges, while this is excluded in [7, Definition 1.5] by the partition requirement. On the other
hand, there are no loops. By construction, the AΓ-diagram can be embedded into D (cf. [7,
Remark in page 43]).

The AΓ-diagram associated with the divide of a real morsification of a real singularity is
simply called an AΓ-diagram of that singularity.

4.2. AΓ-diagram determines the weak real topological type of a singularity. The topo-
logical type of a real singularity (C, z) is its equivalence class up to a homomorphism of the Milnor
ball, and it is known [8, 23] (see also [9, Section 8.4]) that the topological type of a given singular-
ity is determined by the collections of Puiseux pairs of its branches and by pairwise intersection
numbers of the branches. We introduce the weak real topological type of (C, z) to be the
topological type enriched with the following information:

• indication of real branches and pairs of complex conjugate branches;
• the cyclic order of real branches, that is, if (C, z) has k ≥ 1 real branches, we number

them somehow and introduce the cyclic order on the multiset {1, 1, 2, 2, ..., k, k} induced
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by the position of the 2k intersection points of the real branches with the circle ∂RBC,z
and defined up to reversing the orientation of ∂RBC,z and renumbering the topological
types of the real branches, their mutual intersection multiplicities and their intersection
multiplicities with non-real branches.

Theorem 3. An AΓ-diagram of an arbitrary real singularity determines its weak real topological
type.

Proof. Balke and Kaenders [7] proved that the AΓ-diagram determines the topological type of
a totally real singularity, and we closely follow the lines of their proof referring for details to [7,
Section 2] and presenting necessary modifications for the general case.

First, we remark that the partition requirement (see Section 1) was not, in fact, used in [7].
In particular, it is not needed in the construction of the Coxeter-Dynkin diagram from the given
divide as presented in [15].

(1) The main step in the proof of [7, Theorem 2.5 and Corollary 2.6] is to show that an
AΓ-diagram of a totally real singularity determines the branch structure of the divide, pairwise
intersection numbers of the branches, and an AΓ-diagram of each branch. Their argument
literally applies in the general case. We notice in addition that one can easily distinguish between
AΓ-diagrams of non-closed and closed branches of the divide, i.e., between an AΓ-diagram of a
real branch of (C, z) and an AΓ-diagram of a pair of complex conjugate branches. Namely, in the
former case, the AΓ-diagram contains either a univalent •-vertex, or a bivalent •-vertex joined
with a ⊕-vertex and 	-vertex, while in the latter case, the AΓ-diagram has no such •-vertices.

We only comment on the persistence of the cyclic order of real branches of the singularity
(aka, non-closed branches of the divide). An embedding of the AΓ-diagram into RBC,z defines
the divide up to isotopy (see [7, Page 46]). The ambiguity in the construction of an embedding
is related to the existence of the so-called chains in the AΓ-diagram, i.e., connected subgraphs
consisting of bivalent or univalent •-vertices and bivalent ⊕-vertices (or bivalent 	-vertices)
joined by arcs as shown in Figure 4(a) (cf. [7, Figure 6]). Figure 4(b) shows the corresponding
fragment of the divide (cf. [7, Figure 7]). By [7, Lemma 2.8], the given AΓ-diagram can be
transformed by inserting new chains and extending the existing ones in a controlled way into a
chain separating AΓ-diagram, whose maximal (with respect to inclusion) chains have pairwise
distinct lengths, and no new chain can be added.

Each chain of a divide shares the boundary with two non-inner components of the complement
to the divide, and the disc RBC,z can be cut into three parts as shown in Figure 4(b) by dashed
lines (cf. [7, Figure 7]), and similarly one can cut RBC,z with respect to the embedded chain of
the AΓ-diagram, Figure 4(a). Then a given embedding of a chain separating AΓ-diagram can be
changed in part A or in part B by a reflection with respect to the axis of the chain (and so for any
other maximal chain). Note that the branches of the divide, which are disjoint from the chain
of the divide, must all lie either in part A, or in part B, since any two of them must intersect
each other. In the presence of such branches, located, say, in part A, and under the assumption
that the chain is formed by two branches of the divide, all possible self-intersections of the latter
branches must lie in part A too due to Lemma 3(i) applied to the divide with one of these two
branches removed. All these observations yield that the cyclic order of non-closed branches of
the divide is preserved under the changes of the embedding of the chain separating AΓ-diagram
described above. Finally, we note that the same cycling order of the divide is induced by the
corresponding embedding of the original AΓ-diagram.

(2) The topological type a real branch of the given singularity can be recovered from its
AΓ-diagram, see [7, Theorem 1.9]. In a similar way, we show that an AΓ-diagram of a closed
branch of the divide determines the topological type of a real singularity formed by a pair of
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(a) (b)

A BA B

Figure 4. Chains of an AΓ-diagram and of a divide

complex conjugate branches. Namely, an AΓ-diagram defines the monodromy operator of such
a singularity, see [4] and [16, Page 39], and hence its characteristic polynomial, which is the
reduced Alexander polynomial of the link of the singularity [17, §8] (see also [22, Theorem 3.3]).
Thus, we complete the proof with the following statement which is a particular case of [10,
Proposition 3.2].

Lemma 15. The reduced Alexander polynomial of a singularity formed by two topologically
equivalent branches determines the topological type of the branches and their intersection multi-
plicity.

(3) To complete the recovery of the topological type of the given singularity (C, z), we have
to find pairwise intersection multiplicities of the branches of (C, z). By [7, Lemma 2.2], the
intersection number of two non-closed branches of the divide equals the intersection multiplicity
of the corresponding real branches of (C, z). Similarly, the intersection number of a non-closed
and a closed branches of the divide equals twice the intersection multiplicity of the corresponding
real branch of (C, z) with each of the two complex conjugate branches of (C, z) corresponding
to the closed branch of the divide. At last, consider the intersection of two closed branches of
the divide and suppose without loss of generality that these are the only branches of the divide.
From Lemma 15 we know the topological type and the intersection multiplicity of complex
conjugate branches of (C, z) associated with each of the branches of the divide. We claim that
this information together with the intersection number of the branches of the divide determines
the pairwise intersection multiplicities of all four branches of (C, z). Indeed, this can easily
be proved by induction on the number of real infinitely near points in the resolution tree of
(C, z). �
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