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ON THE BI-LIPSCHITZ CONTACT EQUIVALENCE OF PLANE COMPLEX
FUNCTION-GERMS

LEV BIRBRAIR1, ALEXANDRE FERNANDES2, AND VINCENT GRANDJEAN3

To David Trotman for his sixtieth birthday.

Abstract. In this note, we consider the problem of bi-Lipschitz contact equivalence of com-
plex analytic function-germs of two variables. Basically, it is inquiring about the infinitesimal
sizes of such function-germs up to bi-Lipschitz changes of coordinates. We show that this
problem is equivalent to right topological classification of such function-germs.

1. Contact equivalence

Two K-analytic function-germs f, g : (Kn,0)→ (K, 0), at the origin 0 of Kn, are (K-analytic-
ally) contact equivalent if the ideals (in OKn,0) generated by f and, respectively, generated by g
are K-analytically isomorphic. As is well known, this classical (K-analytic) contact equivalence
admits moduli. For a complete description and answer to Zariski problème des modules pour les
branches planes in the uni-branch case, see [5], (see also [6] for an answer towards the general
case). Over the years several generalizations of the notion of (K-analytic) contact equivalence
appeared, and for some rough ones moduli do not exist.

More precisely, we will say that two function-germs f, g : (Kn,0) → (K, 0) at the origin 0
of Kn are bi-Lipschitz contact equivalent if there exists H : (Kn,0) → (Kn,0) a bi-Lipschitz
homeomorphism and there exist positive constants A and B, and σ ∈ {−1,+1} such that

A|f(p)| ≤ |g ◦H(p)| ≤ B|f(p)| when K = C,

Af(p) ≤ σ · (g ◦H(p)) ≤ Bf(p) when K = R,

for any point p ∈ Kn close to 0.
When the bi-Lipschitz homeomorphism H is also subanalytic, we will say that the functions

f and g are subanalytically bi-Lipschitz contact equivalent.

A consequence of the main result of [1] on bi-Lipschitz contact equivalence of Lipschitz
function-germs is the following finiteness
Theorem ([1]). For any given pair n and k of positive integers, the subspace of polynomial
function-germs (Kn,0) → (K, 0) of degree smaller than or equal to k has finitely many bi-
Lipschitz contact equivalence classes.

Later on, Ruas and Valette (see [10]) obtained for real mappings a result more general than
that of [1], and which again ensures the finiteness of the bi-Lipschitz contact equivalent classes for
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polynomial function-germs (Kn,0) → (K, 0) with given bounded degree. However, we observe
that in the aforementioned papers [1, 10], the proofs of the finiteness theorems for bi-Lipschitz
contact equivalence do not say anything about the corresponding recognition problem.

The preprint [2] completely solves the recognition problem of subanalytic contact bi-Lipschitz
equivalence for continuous subanalytic function-germs (R2,0)→ (R, 0) by providing an explicit
combinatorial object which completely characterizes the corresponding orbit.

In the present note, we solve the recognition problem for the subanalytic bi-Lipschitz contact
equivalence of complex analytic function-germs (C2,0)→ (C, 0).

Our main result, Theorem 4.2, states that the subanalytic bi-Lipschitz contact equivalence
class of a plane complex analytic function-germ f : (C2,0) → (C, 0) determines and is deter-
mined by purely numerical data, namely: the Puiseux pairs of each branch of its zero locus,
the multiplicities of its irreducible factors and the intersection numbers of pairs of branches of
its zero locus. It is a consequence of Theorem 3.6 which explicits the order of an irreducible
function-germ g along real analytic half-branches at 0 as an affine function of the contact of the
half-branch and the zero locus of g.

Last, combining the main result of [8] and our main result, we eventually get that two complex
analytic function germs f, g : (C2,0) → (C, 0) are subanalytically bi-Lipschitz contact equiva-
lent if, and only if, they are right topologically equivalent, i.e. there exists a homeomorphism
Φ: (C2,0)→ (C2,0) such that f = g ◦ Φ.

2. Preliminaries

We present below some well known material about complex analytic plane curve-germs. It
will be used in the description and the proof of our main result.

2.1. Embedded topology of complex plane curves.
Let f : (C2,0) → (C, 0) be the germ at 0 of an irreducible analytic function. It admits a

Puiseux parameterization of the following kind:

(1) x→ (xm,Ψ(x)) with Ψ(x) = xβ1ϕ1(xe1) + . . .+ xβsϕs(x
es),

where each function ϕi is a holomorphic unit at x = 0, the integer number m is the multiplicity
of the function f at the origin and (β1, e1), . . . , (βs, es) are the Puiseux pairs of f . Then we can
write down,

(2) f(xm, y) = U(x, y)Πm
i=1(y −Ψ(ωix)),

where ω is a primitive m-th root of unity, the function U is a holomorphic unit at the origin,
and Ψ is a function like in Equation (1).

The following relations determines the Puiseux pairs of f . Let us write Ψ(x) =
∑
j>m ajx

j

and e0 := m and βs+1 := +∞. We recall that

βi+1 = min{j : aj 6= 0 and ei 6 |j} and ei+1 := gcd(ei, βi+1)

for i = 0, . . . , s− 1. We deduce that there exists positive integers m1, . . . ,ms, such that for each
k = 1, . . . , s, we find

(3) m = e1m1 = e2m2m1 = . . . = ek(mk · · ·m1)

We recall that the irreducibility of the function f implies that es = 1.
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Remark 1. Let f : (C2,0) → (C, 0) be an irreducible analytic function-germ and let X be its
zero locus. The ideal IX of C{x, y} consisting of all the functions vanishing on X is generated
by f . If g = λf is any other generator of IX , then the functions f and g have the same Puiseux
pairs. Thus we will speak of the Puiseux pairs of the branch X.

Let f1, f2 : (C2,0)→ (C, 0) be irreducible analytic function-germs, and let X1 and X2 be the
respective zero sets of f1 and f2.

The intersection number at 0 of the branches X1 and X2 is defined as:

(X1, X2)0 = dimC
C{x, y}
(f1, f2)

where (f1, f2) denotes the ideal generated by f1 and f2.

Notation: Let Φ : (C2,0) → (C2,0) be a homeomorphism and let X be a subset germ of
(C2,0). We will write

Φ : (C2, X,0)→ (C2, Y,0)

to mean that the subset germ Y is the germ of the image Φ(X) of X.

The following classical result completely described the classification of embedded complex
plane curve germs:

Theorem 2.1 ([3, 11]). Let f, g : (C2,0)→ (C, 0) be reduced analytic function-germs and let X
and Y be the respective zero sets of f and g. Let X =

⋃r
i=1Xi and Y =

⋃s
i=1 Yi be the irreducible

components of X and Y respectively. There exists a homeomorphism Φ: (C2, X,0)→ (C2, Y,0)
if and only if, up to a re-indexation of the branches of Y , the components Xi and Yi have the
same Puiseux pairs, and each pair of branches Xi and Xj have the same intersection numbers
as the pair Yi and Yj.

We end-up this subsection in recalling a recent result of Parusiński [8]. It is as much a
generalization of Theorem 2.1 to the non reduced case, as it is an improvement in the sense that
it provides a more rigid statement.

Theorem 2.2. Let f, g : (C2,0) → (C, 0) be complex analytic function-germs (thus not neces-
sarily reduced). There exists a germ of homeomorphism Φ : (C2,0)→ (C2,0) such that g◦Φ = f
(the function-germs f and g are then said topologically right-equivalent) if, and only if, there
exists a one-to-one correspondence between the irreducible factors of f and g which preserves the
multiplicities of these factors, their Puiseux pairs and the intersection numbers of any pairs of
distinct irreducible components of the respective zero loci of f and g.

2.2. Lipschitz geometry of complex plane curve singularities.
The Lipschitz geometry of complex plane curve singularities we are interested in is the Lip-

schitz geometry which comes from being embedded in the plane. It is described in a collection
of three articles over 40 years, initiated with the seminal paper [9], followed then by [4] and
concluding for now with the recent preprint [7]. Those papers state that the Lipschitz geometry
of complex plane curve singularities determines and is determined by the embedded topology of
such singularities. The version of this result which we are going to use is the following one:

Theorem 2.3. Let X and Y be germs of complex analytic plane curves at 0 ∈ C2. Then, there
exists a homeomorphism Φ: (C2, X,0) → (C2, Y,0) if, and only if, there exists a (subanalytic)
bi-Lipschitz homeomorphism H : (C2, X,0)→ (C2, Y,0).

The version stated above is almost Theorem 1.1 of [7]. The exact statement of Theorem 1.1
of [7] does not require the subanalyticity of the homeomorphism H. However, we observe that
the proof presented there actually guarantees the subanalyticity of the mapping H.
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3. On the irreducible functions case

This section is devoted to the relation between the order of a given irreducible plane complex
function-germ f along any real analytic half-branch germ at the origin 0 of C2, and the contact
(at the origin) between the half-branch and the zero locus X of f . (Both notions of order and
contact will be recalled below.) Theorem 3.6 is the main result of the section and the key
new ingredient to complete the subanalytic bi-Lipschitz contact classification. It states that the
contact and the order satisfies an affine relation whose coefficients can be explicitly computed
by means of the Puiseux data of X presented in sub-Section 2.1.

We suppose given some local coordinates (w, y) centered at the origin of C2.
Let Γ be a real-analytic half branch germ at the origin of C2, that is the image of (the

restriction of) a real analytic map-germ γ : (R+, 0)→ (C2,0) defined as s→ γ(s) = (w(s), y(s)).
When Γ is not contained in the y-axis, we can assume that γ(s) = (seu(s), se

′
v(s)) for positive

integers e, e′ with u(z),v(z) ∈ O1 := C{z} and u(0),v(0) 6= 0.
When Γ is not contained in the y-axis, we want to find a holomorphic change of coordinates

w → x(w) so that

(4) x(zeu(z)) = ze ⇐⇒ u(z) · x(zeu(z)) = 1

writing x as x(w) := w · x(w) for a local holomorphic unit x. Thus Equation (4) admits
a holomorphic solution. The mapping Θ : (w, y) → (x(w), y) = (x, y) is bi-holomorphic in
a neighbourhood of the origin. In the new coordinates (x, y), the mapping γ now writes as
s→ (se, se

′
v(s)).

Vocabulary. A map-germ φ : (R+, 0) → (C2,0) is ramified analytic if there exists a function
germ φ̃ ∈ O1 and (co-prime) positive integers p, q such that φ(t) = φ̃(tp/q). We will further say
that φ is a ramified analytic unit if φ̃ is a holomorphic unit.

When Γ is not contained in the y-axis, we re-parameterize γ with s(t) := te/m for t ∈ R+,
so that γ(t) := γ(s(t)) = (tm, y(t)) where y is ramified analytic with y(0) = 0 and m is the
multiplicity of the function f at the origin.

If Γ is contained in the y-axis then we take s = t and Θ is just the identity mapping.

We recall that the Puiseux pairs introduced in sub-Section 2.1 are bi-holomorphic invariant.
We denote again f = f(x, y) for f ◦Θ−1 and use the Puiseux decomposition for f(xm, y) given
in Equation (2) to define for each k = 0, . . . , s, the function germ Ψk ∈ O1 as

Ψ0(x) := 0,

Ψk(x) := xβ1ϕ1(xe1) + . . .+ xβkϕk(xek) when k ≥ 1.

Note that Ψk(x) = θk(xek) for some function germ θk ∈ O1.
For each l = 1, . . . ,m, we can write

y(t) = Ψ(ωlt) + tλlul(t)

where λl ∈ Q>0∪{+∞} for ul is a ramified analytic unit, and with the convention that we write
the null function 0 as 0 = t+∞ul(t). Thus the half-branch Γ is contained in X if and only if
there exists l such that λl = +∞.

Notation. Let λ := maxl=1,...,m λl.
Let l ∈ {1, . . . ,m} so that λ = λl. When Γ is not contained in X (equivalently λ < +∞) and

convening further that β0 = 0 and βs+1 = +∞, there exists a unique integer k ∈ {0, . . . , s} such
that

βk ≤ λ < βk+1,
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and consequently we can write
y(t) = Ψk(ωlt) + tλu(t)

for u a ramified analytic unit. (Note that Ψ = Ψk+Rk where Rk(x) = (Ψ−Ψk)(x) = O(xβk+1).)
Evaluating the function f along the parameterized arc t→ γ(t) using Equation (2) gives

f(γ(t)) = f(tm, y(t)) = f(tm,Ψk(t) + tλu(t)) = U(t)Πm
i=1[Ψk(ωlt) + tλu(t)−Ψ(ωit)]

where t→ U(t) is a ramified analytic unit. Since the function t→ f(γ(t)) is a ramified analytic
function, there exist a ramified analytic unit V and a number ν ∈ Q>0 ∪ {+∞} such that

(5) f(γ(t)) = tνV (t).

The number ν of Equation (5) is called the order of the function f along the parameterized curve
t→ γ(t).

Lemma 3.1. 1) Assume Γ is contained in the y-axis. The order of the function f along the
parameterized curve t→ γ(t) = (0, te

′
v(t)) is ν = m · e′.

2) Assume Γ is not contained in the y-axis. The order of ν the function f along the parameterized
curve t→ γ(t) is given by

ν = ekλ+ (e0 − e1)β1 + . . .+ (ek−1 − ek)βk ∈ Q>0 ∪ {+∞}.

Proof. If Γ is contained in the y-axis, then the order of f along t→ (0, te
′
v(t)) is m · e′.

We can assume that Γ is parameterized as R+ 3 t→ γ(t) = (tm, ψk(t) + tλu(t)).
For i ∈ {1, . . . ,m} such that l−i is not a multiple ofm1, the order of Ψk(ωlt)+tλu(t)−Ψ(ωit)

is β1. There are m− 1− (e1 − 1) = e0 − e1 such indices i.
For any 0 < j < k, when i ∈ {1, . . . ,m − 1} is such that l − i is a multiple of m1 . . .mj but

not a multiple of m1 . . .mj+1, the order of Ψk(ωlt) + tλu(t)−Ψ(ωit) is βj . There are ej−1 − ej
such indices.

When i ∈ {1, . . . ,m} is such that l − i is a multiple of m1 . . .mk, the order of

Ψk(ωlt) + tλu(t)−Ψ(ωit)

is λ. There are ek such indices.
We just add-up all these orders to get the desired number ν, once we have checked that this

sum does not depend on the index l such that λ = λl. Let r ∈ {1, . . . ,m} be an index such
that λr = λ. Thus y(t) = Ψk(wrt) + tλur(t). If l − r is not a multiple of m1 · · ·mk, then we
check again that 0 = y(t) − y(t) = tλ(ul(t) − ur(t)) + tβjW for a ramified analytic unit W
and βj ≤ βk−1 < λ, which is impossible. Necessarily l − r is a multiple of m1 · · ·mk and thus
Ψk(wrt) = Ψk(ωlt), so that ν is well defined. �

Now we can introduce a sort of normalized parameterization of real analytic half-branch germs
in order to do bi-Lipschitz geometry. More precisely,

Definition 3.2. A (real) analytic arc (at the origin of C2) is the germ at 0 ∈ R+ of a mapping
α : [0, ε[→ C2 defined as t→ (x(t), y(t)) such that:

0) the mapping α is not constant and α(0) = 0,
1) there exists a positive integer e such that t → α(te) is (the restriction of) a real analytic

mapping,
2) the arc is parameterized by the distance to the origin in the following sense: there exists

positive constants a < b such that for 0 ≤ t� 1 the following inequalities hold,
at ≤ |α(t)| ≤ bt.
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We will denote any analytic arc by its defining mapping α. Note that the semi-analyticity of the
image of an analytic arc α implies a much better asymptotic than that proposed in the definition,
namely we know that |α(t)| = α1t + tδ(t), with α1 > 0 and where δ is ramified analytic such
that δ(0) = 0.

Let α be a real analytic arc. The function t → f ◦ α(t) is ramified analytic, thus as already
seen in Equation (5) can be written as f ◦ α(t) = tνf (α)V (t) for a ramified analytic function V
and νf (α) ∈ Q>0 ∪ {+∞}. The order of the function f along the real analytic arc α is the well
defined rational number νf (α).

Let C be a real-analytic half-branch germ at the origin of C2. Let α and β be two real
analytic arcs parameterizing C. We check with an easy computation that νf (α) = νf (β). Thus
we introduce the following

Definition 3.3. The order of the function f along the real analytic half-branch C is the well
defined number νf (C) := νf (δ) for any analytic arc δ parameterizing C.

Let us denote X(r) = {p ∈ X : |p| = r} for r a positive real number.
Let α be any analytic arc. The contact (at the origin) between the analytic arc α and the

complex curve-germ X is the rational number defined as

c(α,X) = lim
t→0+

log(dist(α(t), X(|α(t)|)))
log(t)

.

Let C be the image of the analytic arc α above. Given any other analytic arc β parameterizing
C, it is a matter of elementary computations to check that c(α,X) = c(β,X). Thus we present
the following

Definition 3.4. The contact between the real-analytic half-branch C and the curve X is
c(C,X) := c(δ,X) for any analytic arc δ parameterizing C.

Let Γ be a real analytic half-branch at the origin of C2. Let γ be a parameterization of Γ of the
form R+ 3 t→ (0, y(t)) when Γ is contained in the y-axis, where y is a ramified analytic function-
germ. When Γ is not contained in the y-axis, possibly after a holomorphic change of coordinates
at the origin of C2, we consider a parameterization of Γ of the form R+ 3 t → (tm, y(t)) for y
ramified analytic.

When the half-branch Γ is not contained in X (and regardless of its position relatively to the
y-axis), as already seen above, we can write y(t) as y(t) = Ψk(ωlt)+ tλu(t) where βk ≤ λ < βk+1

for some integer k ∈ {0, . . . , s}, with u a ramified analytic unit and l ∈ {1, . . . ,m}. Let µ be the
order of |γ(t)| at t = 0, that is the positive rational number µ such that |γ(t)| = Mtµ + o(tµ) for
a positive constant M . Thus we find

Lemma 3.5. The contact between Γ and X is c(Γ, X) = λ
µ .

Proof. Up to a linear change of coordinates we can assume that the tangent cone at the origin
of the (irreducible) curve X is just the x-axis. Writing γ(t) = (x(t), y(t)), the half-branch is
tangent to the x-axis if and only if limt→0 x(t)−1y(t) = 0. When Γ is transverse to the x-axis,
we have k = 0 in the writing of y(t) above, so that µ = λ and thus c(Γ, X) = 1.

When the half-branch Γ is tangent to the x-axis, we deduce µ = m since the tangency
hypothesis implies that y(t) = o(tm). Thus the mapping t → γ(t

1
m ) = (t, y(t

1
m )) is an analytic

arc parameterizing Γ. In particular we must have λ > m.

Notation. Up to the end of this proof we will use the notation Const to mean a positive
constant we do not want to precise further.
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Let ρ : (R+, 0) → (R+, 0) be the function defined as ρ(t) := dist(γ(t
1
m ), X). First, since γ is

tangent to X and the function ρ is continuous and subanalytic, there exists a positive rational
number c such that

(6) ρ(t) = Const · tc + o(tc).

Second, we obviously have for t positive and small enough ρ(t) ≤ t
λ
m |u(t)| so that we deduce

from Equation (6) that c ≥ λ
m .

Let r(t) := |γ(t
1
m )|, so that we find r(t) = t + o(t). Let t → φ(t) be any analytic arc on X

such that ρ(t) = |φ(t)− γ(t
1
m )|. From Equation (6) we get

(7) ||φ(t)| − r(t)| ≤ Const · tc.

Writing φ = (xφ, yφ), we see from Equation (7) that xφ(t) = t+O(tc). Let ξ : (R+, 0)→ (C, 0)

be the ramified analytic function of the form t → ξ(t) := t
1
m [1 + O(tc−1)] and such that ξ(t)

is a m-th root of xφ(t). Thus yφ(t) = Ψ(ωiξ(t)) for some i ∈ {1, . . . ,m} and we observe that
yφ(t) = Ψ(ωit

1
m )+o(t

λ
m ). Since y(t) = Ψk(ωlt

1
m )+t

λ
mu(t

1
m ), with u a ramified analytic function,

and |yφ(t) − y(t
1
m )| ≤ Const · tc, we deduce that Ψk(ωiT ) = Ψk(ωlT ). But this implies that

c ≤ λ
m , and thus c = λ

m .
From Equation (7) we deduce that

(8) ρ(t) ≤ dist(γ(t
1
m ), X(r(t))) ≤ Const · tc.

Combining Equation (6) and Equation (8) we get the result. �

The next result will be key for Theorem 4.2, the main result of this note, is indeed the new
ingredient to the range of questions we are dealing with here. We recall that the Puiseux data
notation convenes that e−1 = β0 = 0, e0 = m and βs+1 = +∞.

Theorem 3.6. Let Γ be a real analytic half-branch at the origin of C2 as above. The order of
the function f along Γ is given by

νf (Γ) = ek · c(Γ, X) + (e0 − e1)
β1
m

+ . . .+ (ek−1 − ek)
βk
m

(9)

= ek

(
c(Γ, X)− βk

m

)
+

k−1∑
i=min(k−1,0)

ei

(
βi+1

m
− βi
m

)
,(10)

where the integer number k ∈ {0, . . . , s} in Equations (9) and (10) is uniquely determined when
c(Γ, X) < +∞ by the following condition:

βk ≤ m · c(Γ, X) < βk+1.

Proof. It is just a rewriting of Lemma 3.1 in term of the size t of any arc parameterizing Γ and
uses Lemma 3.5. �

A direct consequence of the above result is the following result about bi-Lipschitz contact
equivalence.

Proposition 3.7. Let (C2, X,0) and (C2, Y,0) be two germs of irreducible complex plane curves
defined by reduced function-germs f and g respectively. If there exists a subanalytic bi-Lipschitz
homeomorphism H : (C2, X,0)→ (C2, Y,0) then there exist positive constants 0 < A < B < +∞
such that in a neighbourhood of the origin we find

A|f | ≤ |g ◦H| ≤ B|f |.
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Proof. If it is not true, it happens along a real-analytic half-branch C. Necessarily such a half-
branch C must be tangent to the curve X. Taking a parameterization of C by an arc α, we can
for instance assume that (f ◦ α(t))−1(g ◦H ◦ α(t)) goes to 0 as t goes to 0. Let ν be the order
of f(α(t)) and ν′ the order of g(H(α(t))). Theorem 3.6 provides

ν = (e0 − e1)
β1
m

+ . . .+ (ek−1 − ek)
βk
m

+ ek · c(C,X)

ν′ = (e0 − e1)
β1
m

+ . . .+ (ek′−1 − ek′)
βk′

m
+ ek′ · c(H−1(C), Y ).

From the proofs of Lemma 3.1 and Lemma 3.5 we know that

βk′ ≤ m · c(H−1(C), Y ) < βk′+1 and βk ≤ m · c(C,X) < βk+1.

Since the contact is a bi-Lipschitz invariant we get c(C,X) = c(H−1(C), Y ). Besides ν′ > ν,
thus we deduce k′ > k. This latter inequality implies

m · c(H−1(C), Y ) ≥ βk′ ≥ βk+1 > m · c(C,X),

which is impossible. �

4. Main Result

Let f : (C2,0)→ (C, 0) be a germ of analytic function. Let f = fm1
1 · · · fmr

r be the irreducible
decomposition of the function, where f1, . . . , fr are irreducible function-germs and m1, . . . ,mr,
the corresponding respective multiplicities, are positive integer numbers.

Let Xi be the zero locus of fi, let mi be the multiplicity of fi at 0 and let (β
(i)
j , e

(i)
j )sij=1 be

its Puiseux pairs. Let Γ be a real analytic half-branch at the origin. Let ci := c(γ,Xi) be the
contact of Γ with Xi and let νi = νfi(Γ) be the order of fi along Γ.

Since we have defined in Section 3 the order of an irreducible function-germ along Γ, the order
of f along Γ is defined as the sum of the order of each of its irreducible component weighted by
the corresponding multiplicity (as a factor of the irreducible decomposition of f). From Theorem
3.6 we deduce straightforwardly the next

Lemma 4.1. The order ν of the function f along Γ is

ν := m1 · ν1 + . . .+ mr · νr

=

r∑
i=1

mi

e(i)ki
(
ci −

β
(i)
ki

m

)
+

ki−1∑
j=min(ki−1,0)

e
(i)
j

(
β
(i)
j+1

m
−
β
(i)
j

m

)
where each of the integer ki ∈ {0, . . . , si} is uniquely determined when c1 · · · cr < +∞ by the
condition

β
(i)
ki
≤ mi · ci < β

(i)
ki+1.

The main result of this note is the following:

Theorem 4.2. Let f and g be two analytic function-germs (C2,0)→ (C, 0). Let f = fm1
1 · · · fmr

r

and g = gn1
1 · · · gnss be respectively the irreducible decompositions of the functions f and g. Let

Xi be the zero locus of fi and Yj be the zero locus of gj.
The functions f and g are subanalytically bi-Lipschitz contact equivalent if, and only if, pos-

sibly up to a re-indexation of the irreducible factors fi:
0) r = s,
1) the multiplicities of each corresponding factors are equal, that is mi = ni,
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2) the Puiseux pairs of fi and gi are the same, and
3) for any pair i, j, the intersection numbers (Xi, Xj)0 and (Yi, Yj)0 are equal.

In particular, f and g are subanalytically bi-Lipschitz contact equivalent if, and only if, they
are right topologically equivalent.

Proof. First (and possibly after a re-indexation of the irreducible factors fi) assume that,
- r = s,
- the intersection numbers (Xi, Xj)0 and (Yi, Yj)0 are equal for any i 6= j and,
- the Puiseux pairs of the functions fi and g1 are equal and,
- the multiplicities mi and ni are equal, for i = 1, . . . r.
From Theorem 2.3 we deduce there exists H : (C2,0) → (C2,0) a subanalytic bi-Lipschitz

homeomorphism such that H(Xi) = Yi for any i = 1, . . . r. For each i = 1, . . . , r, Proposition
3.7 implies there exist positive constants 0 < Ai < Bi < +∞ such that in a neighbourhood of
the origin we find

Ai|fi| ≤ |gi ◦H| ≤ Bi|fi|.
Thus the functions f and g are bi-Lipschitz contact equivalent (via h).

Conversely, we assume now that there exists H : (C2,0)→ (C2,0) a subanalytic bi-Lipschitz
homeomorphism such that there exist positive constants A < B such that in a neighbourhood
of the origin the following inequalities hold true:

(11) A|f | ≤ |g ◦H| ≤ B|f |.
We immediately find H(X) = Y and r = s. Up to re-indexation of the branches Yi, we also
have H(Xi) = Yi for i = 1, . . . , r. Using Theorem 2.3 again we deduce that the intersection
numbers (Xi, Xj)0 and (Yi, Yj)0 are equal for any i 6= j (let us denote each such number by
Ii,j), the Puiseux pairs of the function-germs fi and gi are equal. It remains to prove that
the multiplicities mi and ni are also equal, for i = 1, . . . , r. In order to prove that m1 = n1,
let C be any real-analytic half-branch such that the contact c = c(C,X1) is sufficiently large
(and finite) and also such that the others contacts c(C,Xi), for i = 2, . . . , r, are equal to the
intersection number Ii,1 := (Xi, X1)0 (see [4] for details). Since H is a subanalytic bi-Lipschitz
homeomorphism such that H(Xi) = Yi for any i = 1, . . . , r, the image H(C) is still a real
analytic half-branch. Since bi-Lipschitz homeomorphisms preserve the contact, we deduce that
c = c(H(C), Y1) and each contact c(H(C), Yi) is equal to the contact (Yi, Y1)0, for i = 2, . . . , r.
In other words we see

(12) νg(H(C)) = c · n1 + I2,1 · n2 + . . .+ Ir,1 · nr
and

(13) νf (C) = c ·m1 + I2,1 ·m2 + . . .+ Ir,1 ·mr.

Combining Equation (11) from the hypothesis, with Equations (12) and (13) we conclude that

cn1 + I2,1n2 + . . .+ Ir,1nr = cm1 + I2,1m2 + · · ·+ Ir,1mr.

Since the half-branch C can be chosen asymptotically arbitrarily close to X1, its contact c
goes +∞, and thus we find m1 = n1. The same procedure can be applied for each remaining
i = 2, . . . , r, substituting i for 1, thus we conclude that

mi = ni for i = 1, . . . , r,

thus proving what we wanted. �

The first immediate consequence of our main result is the following:
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Corollary 4.3. Let f and g be two analytic function-germs (C2,0) → (C, 0). They are bi-
Lipschitz contact equivalent if, and only if, they are subanalytically bi-Lipschitz contact equiva-
lent.

The second consequence is:

Corollary 4.4. The subanalytic bi-Lipschitz contact equivalence classification of complex ana-
lytic plane function-germs has countably many equivalence classes.

References

[1] L. Birbrair, J. Costa, A. Fernandes and M. Ruas, K-bi-Lipschitz equivalence of real function-
germs, Proc. Amer. Math. Soc. 135 (2007), pp 1089–1095. DOI: 10.1090/S0002-9939-06-08566-2

[2] L. Birbrair, A. Fernandes, A. Gabrielov and V. Grandjean, Lipschitz contact equivalence of
function germs in R2, preprint, 2014, 13 pages. arXiv: 1406.2559v2.pdf

[3] W. Burau, Kennzeichung der Schlauchknoten, Abh. Math. Sem. Hamburg, 9 (1932), pp 125–133.
DOI: 10.1007/BF02940635

[4] A. Fernandes, Topological equivalence of complex curves and bi-Lipschitz homeomorphisms, Michigan
Math. J. 51 (2003) pp 593–606. DOI: 10.1307/mmj/1070919562

[5] A. Hefez and M.E. Hernandes, The analytic classification of plane branches, Bull. Lond. Math. Soc.
43 (2011), no. 2, 289–298.

[6] A. Hefez and M.E. Hernandes and M.F.R. Hernandes, The Analytic Classification of Plane
Curves with Two Branches preprint, 2012, 12 pages. arXiv: 1208.3284

[7] W. Neumann and A. Pichon, Lipschitz geometry of complex curves, Journal of Singularities, volume
10 (2014), 225-234. DOI: 10.5427/jsing.2014.10o

[8] A. Parusiński, A criterion for topological equivalence of two variable complex analytic function-germs,
Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), pp 147–150. DOI: 10.3792/pjaa.84.147

[9] F. Pham and B. Teissier, Fractions lipschitziennes d’une algèbre analytique complexe et saturation
de Zariski, Centre de Mathématiques de l’École Polytechnique (Paris), June 1969.

[10] M. Ruas and G. Valette, C0 and bi-Lipschitz K-equivalence of mappings, Math. Z. 269 (2011), pp
293–308. DOI: 10.1007/s00209-010-0728-z

[11] O. Zariski, Studies in equisingularity.II. Equisingularity in codimension 1 (and characteristic zero),
Amer. J. Math. 87 (1965), pp 952–1006. DOI: 10.2307/2373257

Departamento de Matemática, Universidade Federal do Ceará (UFC), Campus do Picici, Bloco
914, Cep. 60455-760. Fortaleza-Ce, Brasil

E-mail address: birb@ufc.br

Departamento de Matemática, Universidade Federal do Ceará (UFC), Campus do Picici, Bloco
914, Cep. 60455-760. Fortaleza-Ce, Brasil

E-mail address: alexandre.fernandes@ufc.br

Departamento de Matemática, Universidade Federal do Ceará (UFC), Campus do Picici, Bloco
914, Cep. 60455-760. Fortaleza-Ce, Brasil

E-mail address: vjhgrgr@gmail.com

http://dx.doi.org/10.1090/S0002-9939-06-08566-2
http://arxiv.org/pdf/1406.2559v2.pdf
http://dx.doi.org/10.1007/BF02940635
http://dx.doi.org/10.1307/mmj/1070919562
http://arxiv.org/abs/1208.3284
http://dx.doi.org/10.5427/jsing.2014.10o
http://dx.doi.org/10.3792/pjaa.84.147
http://dx.doi.org/10.1007/s00209-010-0728-z
http://dx.doi.org/10.2307/2373257

	1. Contact equivalence
	2. Preliminaries
	2.1. Embedded topology of complex plane curves
	2.2. Lipschitz geometry of complex plane curve singularities

	3. On the irreducible functions case
	4. Main Result
	References

