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THE PUNCTUAL HILBERT SCHEMES FOR THE CURVE SINGULARITIES

OF TYPE A2d

YOSHIKI SŌMA AND MASAHIRO WATARI

Abstract. Pfister and Steenbrink studied punctual Hilbert schemes for irreducible curve
singularities. In particular, they analyzed the structure of certain punctual Hilbert schemes

for monomial curve singularities. In this paper, we generalize their results about the curve

singularities of type A2d by clarifying the relationships among the punctual Hilbert schemes
for the singularities.

1. Introduction

Let O be the complete local ring of an irreducible curve singularity over an algebraically closed
field k of characteristic 0. We denote by O and δ the normalization of O and the δ-invariant
of O respectively. Pfister and Steenbrink [3] defined a special subset M of the Grassmannian
Gr
(
δ,O/I(2δ)

)
where I(2δ) is the set of all elements in O whose orders are greater than or

equal to 2δ. It is a projective variety which consists of O-sub-modules and we call it the Pfister-
Steenbrink variety (PS variety) for the given singularity. For any positive integer r, the existence
of the punctual Hilbert scheme of degree r was also shown there. It is a projective variety which
parametrizes the ideals of codimension r in O and is realized as a connected component of the
PS variety.

A numerical semi-group Γ is called monomial, if any curve singularity with it has no moduli.
Pfister and Steenbrink determined all monomial semi-groups in [3]. Using the intersections with
Schubert cells, they also analyzed the structure of the PS varieties for the curve singularities with
monomial semi-groups. The cases for the curve singularities of types A2d, E6 and E8 were also
involved in their study. The punctual Hilbert schemes for the curve singularity of type A1 and
related topics were discussed by Ran in [4, 5]. Kawai [2] computed the Euler characteristic of the
Hilbert scheme C [d] of 0-dimensional length d subschemes of a projective curve C with only the
A1 and A2 singularities. The structures of punctual Hilbert schemes for the curve singularities
of types A1 and A2 were used in this computation. The result was also discussed in the context
of string theory. Recently, by using computational methods, the authors of this paper studied
the structure of all punctual Hilbert schemes for the curve singularities of types E6 and E8 in
[7]. On the other hand, the PS varieties for curve singularities were studied from another point
of view. Rego [6] introduced the compactified Jacobian of singular curves. He also constructed
the Jacobi factor for a curve singularity. The Jacobi factor and the PS variety coincide for a
given curve singularity.

In this paper, we consider the curve singularities of type A2d (i.e. the curve singularities whose
local rings are isomorphic to k[[t2, t2d+1]] where d ∈ N). We denote byMd,r the punctual Hilbert
scheme of degree r for the curve singularity of type A2d. Pfister and Steenbrink showed that: the
PS variety Md,2d is an irreducible rational projective variety of dimMd,2d = d. In particular,
(i) M1,2

∼= P1, (ii) M2,4 is a quardratic cone in P5, (iii) M3,6 is a threefold with a singular
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line with transverse singularity of type A2. In general, the following fact also holds: if r ≥ 2δ,
then the punctual Hilbert scheme of degree r for an irreducible curve singularity coincides with
the PS variety for the same singularity (Corollary 11). So it is enough to consider their degree
r within 1 ≤ r ≤ 2δ for the analysis of the structure of punctual Hilbert schemes (Remark 12).
Since the δ-invariant for a given A2d singularity equals d, the PS variety coincides with Md,2d

by the above fact. Our main theorems are stated as follows:

Theorem 1. Let d and r be two integers with 1 ≤ r ≤ 2d. Putting s := [r/2], the punctual
Hilbert scheme Md,r is a rational projective variety with dimMd,r = s. If r ≥ 2, then it is
isomorphic to the Pfister-Steenbrink variety Ms,2s.

Theorem 2. We keep the notations d, r and s as in Theorem 1. The punctual Hilbert schemes
for the curve singularity of type A2d have the following structures:

(i): The punctual Hilbert scheme Md,1 consists of one point.
(ii): The punctual Hilbert schemes Md,2 and Md,3 are isomorphic to a projective line P1.
(iii): The punctual Hilbert scheme Md,r with 4 ≤ r ≤ 2d is a singular projective variety

whose singular locus is given by Md,2s−2 ∩Md,2s−1
∼=Md,2s−3.

The present paper is organized as follows: In Section 2 below, we briefly recall Pfister-
Steenbrink theory introduced in [3]. In Section 3, we study ideals in the local ring k[[t2, t2d+1]] of
the curve singularities of type A2d. From the point of view of Γ-semi-module structure of orders,
we determine the sets of ideals in O with codimension r (1 ≤ r ≤ 2δ) and their decompositions.
These yield affine cell decompositions of the punctual Hilbert schemes for the curve singularities
of type A2d. In Section 4, we first show the irreducibility of the punctual Hilbert schemes. We
also prove the following proposition:

Proposition 3. The following relations hold for punctual Hilbert schemes:

(i): For integers d and s with 1 ≤ s ≤ d− 1, we have Md,2s
∼=Md,2s+1.

(ii): For integers d, d′ and r with 1 ≤ r ≤ min{2d, 2d′}, we have Md,r
∼=Md′,r.

Finally, we prove Theorem 1 and 2 by using them.

Acknowledgement The authors would like to express his sincere gratitude to Professor Fumio
Sakai for his valuable advices and warm encouragement during the preparation of the present
article.

2. Pfister-Steenbrink theory for punctual Hilbert schemes

In the present paper, we restrict ourselves to monomial curve singularities defined below.
However, the notions in this section hold in more general situations. See [3] for details.

Definition 4. A monomial curve singularity is an irreducible curve singularity whose local ring
is isomorphic to k[[ta1 , . . . , tam ]] for some a1, . . . , am ∈ N.

Remark 5. Without loss of generality, we may assume that gcd(a1, . . . , am) = 1 in Definition 4.

Let O = k[[ta1 , . . . , tam ]] be the local ring of a monomial curve singularity. Its normalization O
is isomorphic to k[[t]]. We call Γ := {ordt(f) | f ∈ O} the semi-group of O. The positive integer
δ := dimk(O/O) is called the δ-invariant of O. For n ∈ N, set I(n) := { f ∈ O| ordt(f) ≥ n}
and I(n) := I(n) ∩ O. Setting ordt(0) =∞, we regard I(n) (resp. I(n)) as an ideal of O (resp.
O). For an ideal I of O, we denote by Γ(I) := {ordt(f)| f ∈ I} the set of orders of all elements
in I. Put G(I) := Γ \ Γ(I). For r ∈ N, define

Ir := {I| I is an ideal of O with dimkO/I = r}.
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A subset ∆ ⊂ Z is called a Γ-semi-module, if ∆ + Γ ⊂ ∆. Note that if ∆ is a Γ-semi-
module, then ∆ − r is also a Γ-semi-module for any integer r. We write ∆ = 〈α1, · · · , αp〉Γ
for a Γ-semi-module ∆ which is minimally generated by α1, · · · , αp (i.e ∆ =

∑p
i=1(αi + Γ) and

∆ )
∑p
i=1,i6=j(αi + Γ) for ∀j ∈ {1, . . . , p}). We also denote by I(∆) the set of all ideals of O

whose set of orders are ∆. Note that I(∆) 6= ∅ if and only if ∆ ⊂ Γ.
The following facts are known:

Lemma 6 ([7], Lemma 5). An ideal I in O belongs to Ir if and only if we have ]G(I) = r.

Proposition 7 ([7], Proposition 7). There exists a finite number of distinct Γ-semi-modules
∆r,1, · · · ,∆r,nr such that

(1) Ir =

nr⋃
l=1

I(∆r,l).

Remark 8. The set of Γ-semi-modules ∆r,l in (1) is an invariant for the codimension r.

Let Gr
(
δ,O/I(2δ)

)
be the Grassmannian which consists of δ-dimensional linear subspaces of

O/I(2δ). For V ∈ Gr
(
δ,O/I(2δ)

)
, we define a multiplication by O × V 3 (f, v) 7→ fv ∈ V . Set

M :=
{
V ∈ Gr

(
δ,O/I(2δ)

) ∣∣V is an O-sub-module w.r.t. the multiplication
}
.

Consider the composition map

(2) ψ : M ψ1−→ Mδ,2δ(k)/ ∼ ψ2−→ PN

where Mδ,2δ(k) is the set of all δ × 2δ matrices over k and the equivalence relation ∼ is the

similarity of matrices. For a formal power series f =
∑∞
j=0 ajt

j in O, we denote its coset in

O/I(2δ) by f =
∑2δ−1
j=0 ajτ

j . The notation τ signifies the coset of t. Define ordτ (f) by ordt(f)

(resp. ∞), if ordt(f) ≤ 2δ − 1 (resp. ordt(f) ≥ 2δ). In this paper, we use the notation
[v1, · · · , vδ]k for a k-vector space generated by v1, . . . , vδ. Let V = [f1, · · · , fδ]k be an element

of M where f i =
∑2δ−1
j=0 aijτ

j . We identify f i with the point ai = (ai0, · · · , ai2δ−1) in k2δ. Let
AV be the δ × 2δ matrix whose ith row is ai. We call it the representation matrix of V . The
first map ψ1 in (2) is defined by sending a k-vector space V to the coset of AV . The second map

ψ2 in (2) is the Plücker embedding with N =
(

2δ
δ

)
− 1. Note that ψ1 and ψ2 are injective.

For r ∈ N, Pfister and Steenbrink defined a map ϕr : Ir →M by ϕr(I) = t−rI/I(2δ).

Proposition 9 ([3], Theorem 3). The map ϕr is injective for any r. Furthermore, it is bijective
for r ≥ 2δ. The image (ψ ◦ ϕr)(Ir) is Zariski closed in ψ(M).

Put Mr := ϕr(Ir). Since ψ is injective, we identify ψ(M) and ψ(Mr) with M and Mr

respectively.

Definition 10. We call M and Mr the Pfister-Steenbrink variety (PS variety for short) and
the punctual Hilbert scheme of degree r for a given curve singularity respectively.

The following fact follows from Proposition 9:

Corollary 11. Any punctual Hilbert scheme Mr with r ≥ 2δ coincides with the PS variety M.

Remark 12. By virtue of Corollary 11, it is enough to consider codimensions r within 1 ≤ r ≤ 2δ
for the analysis of Mr.

Set M(∆r,l) := ϕr(I(∆r,l)) for each component I(∆r,l) in (1). Since ψ is injective, we also
identify ψ(M(∆r,l)) with M(∆r,l). Namely, we regard M(∆r,l) as a subset of the punctual
Hilbert scheme Mr parametrizing ideals in I(∆r,l). Set [a, b] := {x ∈ Z≥0| a ≤ x ≤ b}. For



THE PUNCTUAL HILBERT SCHEMES FOR THE CURVE SINGULARITIES OF TYPE A2d 155

a Γ-semi-module ∆r,l = 〈α1, · · · , αpl〉Γ, we have ∆r,l − r = 〈α1 − r, · · · , αpl − r〉Γ. Define
A := {α1 − r, · · · , αpl − r} ∩ [0, 2δ − 1] and Jα := [α + 1, 2δ − 1] \ {∆r,l − r} for α ∈ A. The
following facts are known:

Proposition 13 ([3], Theorem 7). Let I be an element of I(∆r,l). There exist uniquely deter-
mined bαj ∈ k such that the O-sub-module ϕr(I) is generated by

fα := τα +
∑
j∈Jα

bαjτ
j (α ∈ A).

Corollary 14 ([3], Corollary of Theorem 11). The component M(∆r,l) is isomorphic to the
affine space kN where N =

∑
α∈A ]Jα.

We obtain an affine cell decomposition of Mr by Proposition 7 and Corollary 14.

Proposition 15. The punctual Hilbert scheme Mr of degree r has an affine cell decomposition

(3) Mr =

nr⋃
l=1

M(∆r,l).

The following fact also follows from Corollary 14:

Proposition 16. If Mr is irreducible, then it is a rational projective variety.

The 2δ-dimensional k-vector space O/I(2δ) has the canonical flag

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V2δ = O/I(2δ)

where Vi = I(2δ − i)/I(2δ) for 1 ≤ i ≤ 2δ. This induces a partition of Gr
(
δ,O/I(2δ)

)
into

Schubert cells Wa1,...,aδ for δ ≥ a1 ≥ · · · ≥ aδ ≥ 0, which is defined by

Wa1,...,aδ :=

{
W ∈ Gr

(
δ,O/I(2δ)

)∣∣∣∣∣ dim(W ∩ Vδ+i−ai) = i for 1 ≤ i ≤ δ
dim(W ∩ Vj) < i for j < δ + i− ai

}
.

For an index set Λ = {a1, . . . , aδ}, we sometimes write WΛ instead of Wa1,...,aδ .

Proposition 17. We have Wb1,...,bδ ⊂Wa1,...,aδ if and only if bi ≥ ai holds for 1 ≤ i ≤ δ.

For the details about Schubert cells, see [1, p.195].

Lemma 18. Let M(∆r,l) be a component in (3) and write {b1, . . . , bδ} = (∆r,l − r)∩ [0, 2δ− 1]
where 0 ≤ b1 < · · · < bδ < 2δ. Setting aδ−i+1 = bi − i+ 1 for 1 ≤ i ≤ δ, we have

M(∆r,l) =Mr ∩Wa1,...,aδ .

Proof. It is known that our assertion is true for r = 2δ (see Lemma 5 in [3]). So we consider the
case where r < 2δ. Since M(∆r,l) ⊂ Mr ⊂ M2δ, there exists a Γ-semi-module ∆2δ such that
M(∆2δ) is a component of M2δ and ∆2δ − 2δ = ∆r,l − r. It follows from the above fact for
r = 2δ that M(∆r,l) =Mr ∩M(∆2δ) =Mr ∩ (M2δ ∩Wa1,...,aδ) =Mr ∩Wa1,...,aδ . �

3. Ideals in the local ring of the singularities of type A2d

From this section, we only consider the curve singularities of type A2d and freely use the
notations introduced in the previous section. Let O be the local ring k[[t2, t2d+1]] for some d ∈ N.
The semi-group Γ of O is generated by 2 and 2d+ 1. Note that any Γ-semi-module ∆ contained
in Γ is generated by at at most two elements α1 := min{Γ(I)} and α2 := min{Γ(I) \ (α1 + Γ)}
as Γ-semi-module. We have α2 < α1 + 2d+ 1. We use the notation I(α1, α2) instead of I(∆).
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Lemma 19. For any element I of I(α1, α2), there exist two generators f1 and f2 such that

f1 = tα1 +
∑

j∈G(I),j>α1

cjt
j , f2 = tα2 .

Proof. Since Γ(I) is generated by at most two positive integers as Γ-semi-module, the ideal I is
generated by at most two elements. Let g1 = tα1 +

∑
j>α1

cjt
j and g2 = tα2 +

∑
j>α2

djt
j be

such generators. For any j ∈ Γ(I), there exists an element hj = tj + terms of higher order in I.
Reducing g1 and g2 by hj ’s successively, we obtain the desired generators. �

By Lemma 19, normal forms of all ideals in I(α1, α2) are described as follows:

Proposition 20. If α1 = 2p and α2 = 2q + 1, then we have

I(2p, 2q + 1) =



{(
t2p, t2d+1

)}
for p ≤ d = q,

{(
t2p +

q−1∑
i=d

ait
2i+1, t2q+1

)∣∣∣∣∣ai ∈ k
}

for p ≤ d < q,

{(
t2p, t2p+1

)}
for d < p = q,


t2p +

q−1∑
i=p

ait
2i+1, t2q+1

∣∣∣∣∣ai ∈ k
 for d < p < q.

On the other hand, if α1 = 2p+ 1 and α2 = 2q, then we have

I(2p+ 1, 2q) =



{(
t2p+1, t2p+2

)}
for p ≥ d, q = p+ 1,


t2p+1 +

q−1∑
i=p+1

ait
2i, t2q

∣∣∣∣∣ai ∈ k
 for p ≥ d, q > p+ 1.

Proof. Let I be a non-zero ideal in O. For the set G(I), we have the following two cases:
(Case 1): α1 is even and α2 is odd. Write α1 = 2p and α2 = 2q + 1. It follows from the
definitions of α1 and α2 that p ≤ q. We easily see that Γ(I) = {2i| p ≤ i ≤ q} ∪ {n|n ≥ 2q + 1}
and c(I) = 2q. Since 2d+ 1 ≤ α2 ≤ α1 + 2d+ 1 hold, we also obtain d ≤ q ≤ p+ d. In terms of
p, q and d, the set G(I) is described as follows:

(4) G(I) =


{2i| 0 ≤ i ≤ p− 1} for p ≤ d = q,

{2i| 0 ≤ i ≤ p− 1} ∪ {2j + 1| d ≤ j ≤ q − 1} for p ≤ d < q,

{2i| 0 ≤ i ≤ d} ∪ [2d+ 1, 2p− 1] for d < p = q,

{2i| 0 ≤ i ≤ d} ∪ [2d+ 1, 2p− 1] ∪ {2j + 1| p ≤ j ≤ q − 1} for d < p < q.

(Case 2): α1 is odd and α2 is even. Put α1 = 2p+ 1 and α2 = 2q. It follows from the relations
2d + 1 ≤ α1 < α2 ≤ 2(p + d + 1) that d ≤ p < q ≤ p + d + 1. For I ∈ I(α1, α2), we have
Γ(I) = {2i+ 1| p ≤ i ≤ q − 1} ∪ {n|n ≥ 2q}. For this case, the following four cases occur:

(5) G(I) =


{2i| 0 ≤ i ≤ d} for p = d, q = d+ 1,

{2i| 0 ≤ i ≤ q − 1} for p = d, q > d+ 1,

{2i| 0 ≤ i ≤ d} ∪ [2d+ 1, 2p] for p > d, q = p+ 1,

{2i| 0 ≤ i ≤ d} ∪ [2d+ 1, 2p] ∪ {2j| p+ 1 ≤ j ≤ q − 1} for p > d, q > p+ 1.
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Our assertions follow from Lemma 19 with (4) and (5). �

Lemma 21. If I belongs to I(2p, 2q + 1) or I(2p+ 1, 2q), then its codimension r is given by

(6) r = p+ q − d.

Proof. This relation follows from Lemma 6 with (4) and (5). �

The decomposition of Ir is determined in terms of generators of ∆r,l.

Proposition 22. The sets Ir for 1 ≤ r ≤ 2d are decomposed as follows:

(A): 1 ≤ r ≤ d and r = 2s+ 1. I2s+1 =

s⋃
l=0

I (r + 2l + 1, r + 2(d− l)).

(B): 2 ≤ r ≤ d and r = 2s. I2s =

s⋃
l=0

I (r + 2l, r + 2(d− l) + 1).

For the cases where d+ 1 ≤ r ≤ 2d− 1, the decompositions depend on d.

(C-i): d+ 1 ≤ r ≤ 2d− 1, r = 2s+ 1 and d = 2h.

I2s+1 =

{ h−1⋃
l=0

I (r + 2l + 1, r + 2(d− l))
}
∪
{ h⋃
l=d−s

I (r + 2l, r + 2(d− l) + 1)

}
.

(C-ii): d+ 1 ≤ r ≤ 2d− 1, r = 2s+ 1 and d = 2h+ 1.

I2s+1 =

{ h⋃
l=0

I (r + 2l + 1, r + 2(d− l))
}
∪
{ h⋃
l=d−s

I (r + 2l, r + 2(d− l) + 1)

}
.

(D-i): d+ 1 ≤ r ≤ 2d, r = 2s and d = 2h.

I2s =

{ h⋃
l=0

I (r + 2l, r + 2(d− l) + 1)

}
∪
{ h−1⋃
l=d−s

I (r + 2l + 1, r + 2(d− l))
}
.

(D-ii): d+ 1 ≤ r ≤ 2d, r = 2s and d = 2h+ 1.

I2s =

{ h⋃
l=0

I (r + 2l, r + 2(d− l) + 1)

}
∪
{ h⋃
l=d−s

I (r + 2l + 1, r + 2(d− l))
}
.

Proof. We infer from the relation (6) in Lemma 21 that

(7) α2 = −α1 + 2r + 2d+ 1.

We first consider the case where 1 ≤ r ≤ d. In this case, the positive integer α1 must be even.
Indeed, if not, then we have ]G(I) ≥ d+ 1 since α1 ≥ d+ 1. So we conclude that r ≥ d+ 1 by
Lemma 6. It is a contradiction. It follows from the definitions of α1 and α2 that

(8) α1 ≤ α2 ≤ α1 + 2d+ 1.

Note that I(α1, α2) is a component of Ir if and only if α1 and α2 satisfy both of (7) and (8).
According to r, the sets of all pairs (α1, α2) which satisfy (7) and (8) are determined as follows:
(A) r = 2s+ 1. {(r + 2l + 1, r + 2(d− l))}l=0,...,s

(B) r = 2s. {(r + 2l, r + 2(d− l) + 1)}l=0,...,s
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Next we consider the case in which d + 1 ≤ r ≤ 2d. According to r and d, we obtain the
following sets of the pair (α1, α2)which satisfy (7) and (8):
(C-i) r = 2s+ 1 and d = 2h.

{(r + 2l + 1, r + 2(d− l))}l=0,...,h−1 ∪ {(r + 2l, r + 2(d− l) + 1)}d−s,...,h
(C-ii) r = 2s+ 1 and d = 2h+ 1.

{(r + 2l + 1, r + 2(d− l))}l=0,...,h ∪ {(r + 2l, r + 2(d− l) + 1)}d−s,...,h
(D-i) r = 2s and d = 2h.

{(r + 2l, r + 2(d− l) + 1)}l=0,...,h ∪ {(r + 2l + 1, r + 2(d− l))}l=d−s,...,h−1

(D-ii) r = 2s and d = 2h+ 1.

{(r + 2l, r + 2(d− l) + 1)}l=0,...,h ∪ {(r + 2l + 1, r + 2(d− l))}l=d−s,...,h
Our assertions follow from Proposition 20 with the above datum. �

Let ∆r,l be a Γ-semi-module in (3) and take an element I from I(∆r,l). For the O-sub-module

ϕr(I), define the set of orders of ϕr(I) by Γ(ϕr(I)) := {ordτ (f)| f ∈ ϕr(I)}. It is clear that
Γ(ϕr(I)) has a Γ-semi-module structure. Furthermore, if the Γ-semi-module ∆r,l is generated by
α1 and α2, then Γ(ϕr(I)) is generated by α1−r and α2−r. So we writeM(α1−r, α2−r) instead
of M(∆r,l) for such case. For each r, the decomposition (3) of Mr follows from Proposition 6.

Corollary 23. The punctual Hilbert schemes Mr (1 ≤ r ≤ 2d) are decomposed as follows:

(A): 1 ≤ r ≤ d and r = 2s+ 1. M2s+1 =

s⋃
l=0

M2s+1 (2l + 1, 2(d− l)).

(B): 2 ≤ r ≤ d and r = 2s. M2s =

s⋃
l=0

M2s (2l, 2(d− l) + 1).

(C-i): d+ 1 ≤ r ≤ 2d− 1, r = 2s+ 1 and d = 2h.

M2s+1 =

{ h−1⋃
l=0

M2s+1 (2l + 1, 2(d− l))
}
∪
{ h⋃
l=d−s

M2s+1 (2l, 2(d− l) + 1)

}
.

(C-ii): d+ 1 ≤ r ≤ 2d− 1, r = 2s+ 1 and d = 2h+ 1.

M2s+1 =

{ h⋃
l=0

M2s+1 (2l + 1, 2(d− l))
}
∪
{ h⋃
l=d−s

M2s+1 (2l, 2(d− l) + 1)

}
.

(D-i): d+ 1 ≤ r ≤ 2d, r = 2s and d = 2h.

M2s =

{ h⋃
l=0

M2s (2l, 2(d− l) + 1)

}
∪
{ h−1⋃
l=d−s

M2s (2l + 1, 2(d− l))
}
.

(D-ii): d+ 1 ≤ r ≤ 2d, r = 2s and d = 2h+ 1.

M2s =

{ h⋃
l=0

M2s (2l, 2(d− l) + 1)

}
∪
{ h⋃
l=d−s

M2s (2l + 1, 2(d− l))
}
.

Remark 24. The punctual Hilbert scheme M1 consists of one point which corresponds to the
maximal ideal of O.
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4. Proof of Main Theorems

In this section, we prove Theorem 1 and 2. To emphasis d, we use notations Md,r and
Md,r(α1 − r, α2 − r) insted of Mr and Mr(α1 − r, α2 − r).

Lemma 25. If the codimension r is odd (resp. even), then the component Md,r(1, 2d) (resp.
Md,r(0, 2d+ 1)) of the decomposition in Corollary 23 is the open dense subset of Md,r.

Proof. We should check our assertion for each case in Corollary 23. However, we only consider
the case (D-ii) in Corollary 23. The other cases are treated in the same way. For r = 2s, set

Λ1(l) : = {d, . . . , d︸ ︷︷ ︸
2l

, d− 1, d− 2, . . . , 2l + 1, 2l︸ ︷︷ ︸
d−2l

} for l = 0, . . . , h,

Λ2(l) : = {d, . . . , d︸ ︷︷ ︸
2l+1

, d− 1, d− 2, . . . , 2d− r + l︸ ︷︷ ︸
d−2l−1

} for l = d− s, . . . , h.

By Lemma 18, we see that

Md,2s(2l, 2(d− l) + 1) =Md,2s ∩WΛ1(l) for l = 0, . . . , h,

Md,2s(2l + 1, 2(d− s)) =Md,2s ∩WΛ2(l) for l = d− s, . . . , h.
(9)

The following inclusions also follows from Proposition 17:

(10) WΛ1(l+1) ⊂WΛ1(l), WΛ2(l+1) ⊂WΛ2(l), WΛ2(d−s) ⊂WΛ1(0)

It follows from (9), (10) and (D-ii) in Corollary 23 that

Md,2s =

{
Md,2s ∩

(
h⋃
l=0

WΛ1(l)

)}
∪

{
Md,2s ∩

(
h⋃

l=d−s

WΛ2(l)

)}
⊂Md,2s ∩

(
WΛ1(0) ∪WΛ2(d−s)

)
=Md,2s ∩WΛ1(0)

=Md,2s(0, 2d+ 1) ⊂Md,2s.

Hence we conclude that Md,2s =Md,2s(0, 2d+ 1). �

Next we prove Proposition 3.
Proof of Proposition 3. We first prove (i) by constructing an isomorphism betweenMd,2s and
Md,2s+1. We have the following combination of the decomposition types ofMd,2s andMd,2s+1.

Decomposition type of Md,2s (B) (B) (D-i) (D-ii)
Decomposition type of Md,2s+1 (A) (C-i) (C-i) (C-ii)

We referred to Corollary 23 for the decomposition types. We only prove our assertion for the
pair (D-ii) and (C-ii) here. The other cases can be treated in the same way. Since d is odd in
this case, we put d = 2h+ 1. It follows from Corollary 23 that

Md,2s =

{ h⋃
l=0

Md,2s (2l, 2(d− l) + 1)

}
∪
{ h⋃
l=d−s

Md,2s (2l + 1, 2(d− l))
}
,

Md,2s+1 =

{ h⋃
l=0

Md,2s+1 (2l + 1, 2(d− l))
}
∪
{ h⋃
l=d−s

Md,2s+1 (2l, 2(d− l) + 1)

}
.
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By Propositions 20, 22, Corollary 23 and the definition ofMd,r, we obtain the following explicit
descriptions of the components of Md,2s and Md,2s+1:

Md,2s(2l, 2(d− l) + 1) =


τ2l +

d−l−1∑
j=d−s

bjτ
2j+1, τ2(d−l)+1

∣∣∣∣∣bj ∈ k
 for l = 0 . . . , d− s,

τ2l +

d−l−1∑
j=l

bjτ
2j+1, τ2(d−l)+1

∣∣∣∣∣bj ∈ k
 for l = d+ 1− s . . . , h,

Md,2s(2l + 1, 2(d− l)) =

τ2l+1 +

d−l−1∑
j=l+1

bjτ
2j , τ2(d−l)

∣∣∣∣∣bj ∈ k
 for l = d− s . . . , h− 1,{

(τd, τd+1)
}

for l = h,

Md,2s+1(2l + 1, 2(d− l)) =


τ2l+1 +

d−l−1∑
j=d−s

bjτ
2j , τ2(d−l)

∣∣∣∣∣bj ∈ k
 for l = 0, . . . , d− s− 1,

τ2l+1 +

d−l−1∑
j=l+1

bjτ
2j , τ2(d−l)

∣∣∣∣∣bj ∈ k
 for l = d− s . . . , h− 1,{

(τd, τd+1)
}

for l = h,

Md,2s+1(2l, 2(d− l) + 1) =
τ2l +

d−l−1∑
j=l

bjτ
2j+1, τ2(d−l)+1

∣∣∣∣∣bj ∈ k
 for l = d− s . . . , h

Both of Md,2s and Md,2s+1 have s + 1 components. Furthermore, the numbers of coefficients
involved in the elements of their components are 0, 1, . . . , s − 1, s. So, for two components of
Md,2s andMd,2s+1 which have same number of coefficients, we can define a bijection by sending
an element ofMd,2s to that ofMd,2s+1 which has same coefficients. In this way, we obtain s+1
bijections between the components of Md,2s and Md,2s+1. It is clear that the union of them is
an isomorphism from Md,2s to Md,2s+1.

Next we prove (ii). If r = 1, then we have Md,1 = {one point} for any d ∈ N, as mentioned
in Remark 24. So we consider the case where r ≥ 2. For any d, d′ ∈ N, we can construct an
isomorphism between Md,r and Md′,r by the same argument in the proof of (i). �

The following fact is known:

Theorem 26 ([3]). We have dim(Md,2d) = d for any d ∈ N.

Proof of Theorem 1. The rationality of Md,r is an immediate consequence of Lemma 25 and
Proposition 16. The relationMd,r

∼=Ms,2s also follows from (i) and (ii) in Proposition 3. Hence,
we obtain dimMd,r = dimMs,2s = s by Theorem 26. �

Next we prove Theorem 2.
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Proof of Theorem 2. The statement (i) already was mentioned in Remark 24. For (ii), the
relation M2,2

∼= M2,3
∼= P1 proved in [3]. Hence it follows from (ii) in Proposition 3 that

Md,2
∼=Md,3

∼= P1 for any d. The statement (ii) is proved. Since it was shown that

Sing(M2,4) =M2,2 ∩M2,3 =M2,1 = {one point}

in [3], we only have to consider the cases where d ≥ 3 to prove (iii). We may assume that r
is even by (i) in Proposition 3. Moreover, since Md,r is isomorphic to Ms,2s by Theorem 1, it
is enough to prove our assertion for some PS variety Md,2d (d ∈ N). We divide the rest of the
proof of (iii) into the following three cases:

Case 1 : d = 3, Case 2 : d is even and d ≥ 4, Case 3 : d is odd and d ≥ 5

Here we only consider Case 3. The other cases can be treated in a similar manner. Put d = 2h+1.
By using Propositions 20, 22, Corollary 23 and the definition of Md,r, we have

Md,2d−3 =

{ h⋃
l=0

Md,2d−3 (2l + 1, 2(d− l))
}
∪
{ h⋃
l=2

Md,2d−3 (2l, 2(d− l) + 1)

}

Md,2d−2 =

{ h⋃
l=0

Md,2d−2 (2l, 2(d− l) + 1)

}
∪
{ h⋃
l=1

Md,2d−2 (2l + 1, 2(d− l))
}

Md,2d−1 =

{ h⋃
l=0

Md,2d−1 (2l + 1, 2(d− l))
}
∪
{ h⋃
l=1

Md,2d−1 (2l, 2(d− l) + 1)

}

Md,2d =

{ h⋃
l=0

Md,2d (2l, 2(d− l) + 1)

}
∪
{ h⋃
l=0

Md,2d (2l + 1, 2(d− l))
}

where

Md,2d−3(2l + 1, 2(d− l)) =


τ +

d−1∑
j=2

bjτ
2j , τ2d

∣∣∣∣∣bj ∈ k
 for l = 0,

τ2l+1 +

d−l−1∑
j=l+1

bjτ
2j , τ2(d−l)

∣∣∣∣∣bj ∈ k
 for l = 1 . . . , h− 1,{

(τd, τd+1)
}

for l = h,

Md,2d−3(2l, 2(d− l) + 1) =
τ2l +

d−l−1∑
j=l

bjτ
2j+1, τ2(d−l)+1

∣∣∣∣∣bj ∈ k
 for l = 2 . . . , h,
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Md,2d−2(2l, 2(d− l) + 1) =


1 +

d−1∑
j=1

bjτ
2j+1, τ2d+1

∣∣∣∣∣bj ∈ k
 for l = 0,

τ2l +

d−l−1∑
j=l

bjτ
2j+1, τ2(d−l)+1

∣∣∣∣∣bj ∈ k
 for l = 1 . . . , h,

Md,2d−2(2l + 1, 2(d− l)) =

τ2l+1 +

d−l−1∑
j=l+1

bjτ
2j , τ2(d−l)

∣∣∣∣∣bj ∈ k
 for l = 1 . . . , h− 1,{

(τd, τd+1)
}

for l = h,

Md,2d−1(2l + 1, 2(d− l)) =

τ2l+1 +

d−l−1∑
j=l+1

bjτ
2j , τ2(d−l)

∣∣∣∣∣bj ∈ k
 for l = 0 . . . , h− 1,{

(τd, τd+1)
}

for l = h,

Md,2d−1(2l, 2(d− l) + 1) =
τ2l +

d−l−1∑
j=l

bjτ
2j+1, τ2(d−l)+1

∣∣∣∣∣bj ∈ k
 for l = 1 . . . , h,

Md,2d(2l, 2(d− l) + 1) =
τ2l +

d−l−1∑
j=l

bjτ
2j+1, τ2(d−l)+1

∣∣∣∣∣bj ∈ k
 for l = 0 . . . , h,

Md,2d(2l + 1, 2(d− l)) =

τ2l+1 +

d−l−1∑
j=l+1

bjτ
2j , τ2(d−l)

∣∣∣∣∣bj ∈ k
 for l = 0 . . . , h− 1,{

(τd, τd+1)
}

for l = h

It follows from the above descriptions of components that

Md,2d = (Md,2d−2 ∩Md,2d−1) ∪Md,2d(1, 2d) ∪Md,2d(0, 2d+ 1)
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where

(Md,2d−2 ∩Md,2d−1) ∩Md,2d(1, 2d) = ∅,
(Md,2d−2 ∩Md,2d−1) ∩Md,2d(0, 2d+ 1) = ∅,

Md,2d(1, 2d) ∩Md,2d(0, 2d+ 1) = ∅.
Furthermore, Md,2d(1, 2d) andMd,2d(0, 2d+ 1) are affine spaces by Corollary 14, we must have
Sing(Md,2d) = Sing(Md,2d−2 ∩Md,2d−1). Since both of

Md,2d−2 \ (Md,2d−2 ∩Md,2d−1) =Md,2d−2(0, 2d+ 1),

Md,2d−1 \ (Md,2d−2 ∩Md,2d−1) =Md,2d−1(1, 2d)

are affine spaces again, we conclude that Sing(Md,2d) = Md,2d−2 ∩ Md,2d−1. Finally, the
relation Md,2d−2 ∩Md,2d−1

∼=Md,2d−3 can be shown by constructing an isomorphism. For the
construction, refer to the proof of (i) in Proposition 3. �

References

[1] Ph. Griffiths, J. Harris: Principles of Algebraic Geometry. Wiley, New York, (1978).

[2] T. Kawai: Abelian vortices on nodal and cuspidal curves. J. High Energy Phys. 11(2009)11.
DOI: 10.1088/1126-6708/2009/11/111

[3] G. Pfister, J.H.M. Steenbrink: Reduced Hilbert schemes for irreducible curve singularities. J. Pure and Applied

Algebra. 77, 103-116, (1992). DOI: 10.1016/0022-4049(92)90033-C
[4] Z. Ran: A note on Hilbert schemes of nodal curves. J. Algebra. 292 no.2, 429-446, (2005).

DOI: 10.1016/j.jalgebra.2005.06.028

[5] Z. Ran: Geometry of nodal curves. Compos. Math. 141 no 5, 1191-1212, (2005).
DOI: 10.1112/S0010437X05001466

[6] C. Rego: The compactified Jacobian. Ann. Sci. Éc. Norm. Supér. IV. Sér. 13, 211-223, (1980).
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